

The Microsoft® Windows® Guidelines

 for Accessible Software Design

 Creating Usable Applications for Everyone

Please direct comments and suggestions to:

Martin Higgins, Writer/Editor - a-martih@microsoft.com

Microsoft Accessibility and Disabilities Group - Technology for Everyone

One Microsoft Way

Redmond, WA 98052-6399

 http://microsoft.com/enable/

 1993-1999 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Visual Basic, Win32, Windows, and Windows NT are

registered trademarks, and ActiveX is a trademark of Microsoft Corporation.

The information contained in this document represents the current view of

Microsoft Corporation on the issues discussed as of the date of publication. Because

Microsoft must respond to changing market conditions, it should not be interpreted

to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the

accuracy of any information presented after the date of publication.

This document is for informational purposes only.

MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN

THIS DOCUMENT.

Comment [MJH1]: 6/9/99 This version is

refigured to address the needs of developers and

testers. I feel we should have another version with a

general audience focus.

Comment [MJH2]: 6/7/99 I removed the

―Concise Summary of Recommendations‖ to keep it

simple and un-presupposing. Again, this version is

targeted solely for developers and testers.

Comment [MJH3]: 6/7/99 This tracks to our

new slogan, seems less whiny and sounds more

eloquent.

mailto:a-martih@microsoft.com
http://microsoft.com/enable/

 Contents ii

Contents

Section 1 - Introduction .. 3

Section 2 Current Accessibility Information ... 5
Disability Categories ...6
Types of Accessibility Aids ..8
How To Make Computers and Applications Accessible10

Section 3 - Detailed Design Guidelines... 12
Keyboard Access ..12
Exposing Keyboard Focus ..16
Exposing Screen Elements ..20
Color ...27
Size ...32
System Size Settings ...32
Sound ..36
Timings ...40
Unexpected Side Effects ...41
Mouse Input ..43
Customizable User Interface ...44
Layout ...45

Section 4 Summary of Recommendations ... 48

Section 5 Testing Techniques.. 54
Appendix A - Additional Resources ...56
Appendix B - Accessible Documentation ...57
Appendix C - Accessible Packaging ...59
Appendix D - Product Support and Customer Service60
Appendix E - Windows Version 3.x Guidelines ...62

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 3

Section 1 - Introduction

Figure 1 - Illustration of Computer user at the keyboard

Personal computers are powerful tools that help people work, create, and

communicate in ways that would otherwise be difficult or impossible. But the goal

of simplifying computers for everyone can only be realized when all people have

access to the power of personal computing.

Microsoft® Windows® and Windows NT® have features and enhancements to make

computers accessible to people with disabilities, but to make home, school, and

workplace computers usable for everyone, applications must be designed to support

these options.

This document explains:

 How to compensate for various limitations.

 How computers can be modified to meet accessibility requirements.

 How to design and develop accessible computer software.

 How to test, document, package, and support accessible products.

The Microsoft Windows Guidelines for Accessible Software Design was created

to remove design flaws that prevent people from using applications – not as special

considerations for special groups, but rather, ―Technology for Everyone‖ which

literally means options for all.

See http://microsoft.com/enable/ for more information.

Although prepared for software application designers, builders, testers, and

documentation writers for the Windows 9x, Windows 2000, and Windows NT

operating systems, this document provides valuable insights for all IT

 Current Accessibility Information - Disabilities, accessibility aids, and design

sensibility

 Detailed Design Guidelines - How to put these guidelines into practice.

Features and programming techniques that make applications more accessible

and compatible with accessibility aids

 Summary of Requirements and Recommendations –Windows Logo

requirements and design recommendations

 Testing Techniques – Guidelines for testing accessible products

 Quick reference appendices:

A. Additional Resources - Accessibility aids and manufacturers

The Microsoft Windows Guidelines for Accessible Software Design 4

B. Accessible Documentation

C. Accessible Packaging

D. Product Support and Customer Service

E. Windows Version 9.x Guidelines

F. Windows Version 3. x Guidelines

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 5

Section 2 Current Accessibility Information
This section discusses:

 Reasons for Supporting Accessibility

 Disability and Accessibility

 Disability Categories

 Types of Accessibility Aids

 How To Make Computers and Aplications Accessible

Reasons for Supporting Accessibility
Creating accessible applications is the right thing to do, from both a cogent,

comprehensive design sensibility, to simply addressing the entire market. When

everyone can live, work, study, play and create independently, we all benefit

enormously from their contributions.

Accessible design is also important to the computer industry because:

 Accessible products are needed by over 30 million Americans with

disabilities, plus their household members, friends and relatives.

 Accessible products are necessary for businesses, government agencies,

schools, and federally funded organizations to comply with:

 The Americans with Disabilities Act (ADA)

 The Rehabilitation Act (sections 508 and 504)

 The Assistive Technology Act of 1998 (ATA)

 The Individuals with Disabilities Education Act of 1997 (IDEA'97)

 Human Factors and Ergonomics Society (HFES) and American

National Standards Institute (ANSI) guidelines

 The United Kingdom’s Disability Discrimination Act and pending

European Community ISO 9000 legislation

 Accessible design enables applications to qualify for the ―Designed for

Windows and Windows NT‖ Logo. The logo handbook currently lists five

requirements designed to make applications more accessible and includes

strong recommendations, which will become requirements in the future.

 Accessible applications enable employers to retain valuable employees if

they become temporarily or permanently disabled, or develop functional

limitations as a natural part of aging.

 Accessibility aids require the same information used by sophisticated

automation tools, such as:

 Testing tools

 Task automation tools (intelligent agents)

 New input methods (voice input)

 The FCC is currently evaluating the United States Telecommunications Act

to determine whether to mandate certain levels of accessibility for all

commercial materials distributed by telephone and over the Internet.

Comment [GCL4]: Page: 3

 12/29/98: Compare this with the sections from the

LEA Chapter and the Logo handbook.

The Microsoft Windows Guidelines for Accessible Software Design 6

Disability Categories
Disabilities are divided into the following general categories:

 Visual Impairments

 Hearing Impairments

 Mobility Impairments

 Speech Impairments

 Seizure Disorders

 Cognitive and Language Impairments

These categories describe disability groups covering a wide range of people with

distinctly different levels of individual need.

Figure 2 – Ten examples of accessibility graphic signage

Visual Impairments
Visual impairments range from minimally reduced visual acuity to total blindness.

Millions of people have slightly impaired vision, finding it difficult to read small

print or black text on a gray background or experience eyestrain during long

computing sessions. These inconveniences are usually not considered disabilities,

but applications that compensate for this type of user need makes computing less

demanding and more accessible for all.

Corrected vision beyond 20/80 is considered low vision, a condition that requires

larger than normal text and higher foreground text/background contrast. When

corrected vision cannot rely exclusively on visual information — approximately

20/200 or higher — it is considered blindness, requiring all displayed information to

be converted into articulated text or Braille.

Other visual impairments include:

 Reduced field of vision, where focus is limited to a small area

 Color blindness, where some color combinations are difficult or impossible

to identify. This condition affects approximately 11% of the population.

Hearing Impairments
Users who are unable to hear, identify various sounds, or recognize spoken words

require an alternative prompting method.

This problem includes people:

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 7

 Working in a noisy environment (busy office, vehicle, aircraft, factory)

 Working in a noise sensitive environment where sounds can disturb other

people (library, classroom, courtroom, hospital)

 Using a computer with a broken or missing soundcard or loudspeaker.

Mobility Impairments
Some users are unable to perform manual tasks such as:

 Moving a mouse or other pointing device

 Pressing two keys simultaneously

 Pressing one key at a time

 Pressing and holding down a key

 Holding a book open

Many users need keyboards and mouse functions to be adapted to their

requirements, or rely exclusively on a single input device.

Cognitive And Language Impairments
Cognitive and language impairments take several forms:

 Short- and long-term memory loss – Amnesia (caused by disease, trauma or

intense emotional episodes)

 Perception anomalies – inability to recognize colors or images

 Developmental disabilities – Alzheimer’s Disease, Down Syndrome, Aging

 Language impairments – dyslexia, aphasia, illiteracy or using software written

in an unfamiliar language

Well-designed software can help people with mild cognitive or language

impairments use computers and can also help children and illiterate adults learn to

read.

Seizure Disorders
Epileptic seizures can be triggered by:

 Flashing lights or images – warnings, decorative elements

 Rapidly changing images – animations and reduced frame rate video

 Random or repetitive sounds – alert sounds and notifications

Speech Impairments
Computers aid people who have difficulty speaking by allowing them to

communicate through electronic mail, postings and online chats, and by articulating

typed or selected text with synthesized speech.

Given the current state of technology, speech difficulties do not usually affect a

user’s ability to operate a computer, but it may pose a problem when using

telecommunications and voice menus. Speech limitations may also present a

challenge when voice recognition becomes a prevalent input method.

The Microsoft Windows Guidelines for Accessible Software Design 8

Types of Accessibility Aids
The following sections describe common types of accessibility aids — utilities

added to a computer to make it more accessible to people with certain disabilities:

 Screen enlargement utilities

 Screen review utilities

 Voice input utilities

 On-screen keyboards

 Keyboard filters

Not all people with disabilities use tools like these, but they are crucial for those

who must. Utility effectiveness depends on compatible application software.

Many of these utilities are available as free demonstration software on the World

Wide Web. See http://www.microsoft.com/enable/ for an accessibility aids catalog.

Screen enlargement utilities

Figure 3 – Image of a window and the same window enlarged by the Windows

Magnifier accessory.

Screen enlarger utilities – also known as screen magnifiers or large print programs

– allow users to magnify a portion of the screen by converting the monitor into a

window that shows an enlarged virtual display. Enlargers must track where the user

is working to automatically display the active area. Users have the choice of moving

the window with mouse or keyboard commands to view off-screen areas.

Comment [MJH5]:

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 9

Screen review utilities

Figure 4 - Illustration of computer screen reader announcing, "Press enter to

begin."

Users who are blind or have difficulty reading rely on screen review utilities – also

known as blind-access utilities or screen readers. Screen review utilities present

visually displayed screen information through alternative, non-visual media, such as

synthesized speech or a refreshable Braille display. These methods are text driven,

so the utility must render graphic screen elements as text. The utility must also track

focus location and the current operation to describe important aspects of what is on

the screen.

Blind-access utilities announce when the keyboard focus moves to a new word,

control, or window and other on-screen changes automatically. Users can also

choose to have the utility articulate other on-screen information.

Example: Keying a shortcut that prompts the utility to announce where the user is

working on-screen, such as, ―Cancel push button, Open dialog box, Excel‖.

Users with dyslexia or other reading difficulties use similar tools – also known as

reading aids – to articulate individual words or documents.

Within Windows, these utilities collect information through the Win32® API and

through the application, when provided, using Microsoft Active Accessibility. As a

back-up verification system, some utilities infer contextual relationships between

elements by monitoring all operations that draw information to the screen.

Voice input utilities
Users with profound mobility impairments often use voice input utilities – also

referred to as speech recognition programs – to control the computer by voice

command rather than with a mouse or keyboard. Most voice input users do not have

disabilities per se, but use the utility for multitasking or when manual input is

inconvenient.

Example: Hands-free text input while manually searching through print documents.

As with screen review utilities, voice input utilities must identify and manipulate on-

screen objects, so users can activate commands by speaking a few commands.

On-screen keyboards
When keyboard entry is not an option, users often employ alternative input methods,

such as switches or pointing devices. On-screen keyboard utilities display command

lists and allow command execution through several input methods. These aids

display a ―point and click‖ key set that can choose commands, activate objects, or

―type‖ text.

The Microsoft Windows Guidelines for Accessible Software Design 10

Some utilities also allow users to choose commands using switches. A single-switch

system displays an on-screen keyboard that successively highlights groups of

commands until the user selects a group by closing a switch. The utility then

continues to highlight sub-groups until the user selects a single command. If the user

can point but not click – as when using a head pointer – the command can be

activated by pausing over the desired choice for a pre-set timing period.

(Brief description of a multiple switch system needed here?)

On-screen keyboards are commonly used to display all available command buttons.

To display them appropriately, the utility must identify, name, and activate controls

as a voice input utility would.

Keyboard filters
Users with impaired dexterity may have difficulty using an unmodified keyboard.

Windows operating system keyboard filters can compensate for erratic motion,

tremors, slow response time, and related input issues, but these compensations are

more difficult to assign to pointing devices (mouse, trackball). Users with impaired

dexterity usually rely on keyboard input.

For more information about these options, see the Accessibility Options section in

the Windows Control Panel.

Other types of keyboard filters include typing aids (word prediction, abbreviation or

expansion utilities) and add-on spelling/grammar checkers. These utilities benefit a

growing group of non-disability users by improving typing speed, maintaining word

accuracy, and ensuring grammatical clarity to documents.

How To Make Computers and

Applications Accessible
Accessibility is achieved by designing computer software to accommodate the

widest range of users, including those with disabilities. A few simple options greatly

increase the number of people who can use an application.

Special needs are addressed in the following ways:

 New features can be built into hardware and operating systems, making them

more accessible for users with and without specialized needs. This is the

preferred solution, ensuring that features will be available on all workstations

and used with all accessibility-compliant applications.

 Accessibility aids can enhance the hardware and operating system, making them

usable for more people. These aids work with most applications, but they must

be moved or duplicated when the user works at a different computer and are

often expensive. Unfortunately, many people who could benefit from such aids

never acquire them.

 Specialized applications, such as word processors, can be optimized for people

with specific disabilities. While these specialized applications are available,

people with disabilities need to use mainstream applications to ensure system

integration with co-workers and frequent feature upgrades.

Example: Internet browsers designed to read pages for people who are blind and

word processors that integrate voice and text for people with cognitive

impairments or limited literacy skills.

Comment [MJH6]: 6/8/99 We mention both

then describe one in detail. Either we should drop

the multiple switch reference, describe it or shorten

the single switch description.

Comment [MJH7]: 6/8/99 Is this artwork

necessary?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 11

 Usability features can be built into mainstream applications, making them

easier to use for people with disabilities.

Example: Customizable colors and access keys provided exclusively by the

application.

These features also benefit people who do not have disabilities by offering usability

options.

This document addresses two areas that determine application accessibility:

 End-user features to make an application more usable

 Programming techniques for application compatibility with accessibility aids

The Microsoft Windows Guidelines for Accessible Software Design 12

Section 3 - Design Guidelines

Figure 5 - Illustration of designer at drafting table

The following guideline discussions, requirements and recommendations are

displayed with quick reference priority (= low, = high), Logo

requirement status, and category headings:

 Complete Keyboard Access

 Exposing the Keyboard Focus

 Exposing Screen Elements

 Color

 Size

 Sound

 Timings

 Unexpected Side Effects

 Mouse Input

 Customizable User Interface

 Layout

Complete Keyboard Access

Provide keyboard access to all features.

Logo Requirement

Blindness
Dexterity

A well-designed keyboard interface is an important component of software

accessibility because it serves users with a wide range of disabilities and those who

simply prefer keyboard input. All applications should be designed so that they can

be operated entirely by keyboard input. If mouse input is offered, it must be

optional.

This section covers:

 Choose a Keyboard Interface

 Keyboard Access Design Exceptions

Comment [MJH8]: 6/8/99 These decorative

embellishments move the document toward a ―user‖

presentation style rather than a crisp developer/tester

format.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 13

 Document the Keyboard Interface

 Underline Access Keys

Choose a Keyboard Interface
Effective keyboard interface design adapts a current, familiar model

where interface keystrokes are intuitive where compatible with existing

applications or controls.

The Microsoft Windows Keyboard Guide, available at:

http://www.microsoft.com/enable/training/keyboard.htm , contains

keyboard user interface (UI) standards and recommendations for

Windows-based applications. This reference material identifies specific

keystroke combinations and is a valuable resource when designing any

keyboard UI.

In cases where dialog boxes become overly complex and unique access

keys cannot be assigned, favor a ―common sense‖ solution.

The following examples show how to move and resize objects using

keyboard inputs, and navigational techniques that can be adopted or

adapted to a new application:

 Menus and Dialog Boxes – (WINAPP26) Menus are one of the

most common and standardized user interface elements. Putting

commands on the menu is always a safe option, but avoid large and

unwieldy menus by providing a default configuration that hides

command menu items until the user requests them. commands to a

menu is a simple accessibility solution, but designers should

Menu items should be explicitly requested through an option in the

application or when users set the Keyboard Preference flag in Control

Panel. (Keyboard Preference is discussed later in this document.)

Supporting this option can provide dialog boxes and property sheets

with the functionality of mouse input.

 Property Sheets – A user can directly manipulate a control to adjust

its size and location by using the objects property sheet. This

preferable, non-modal method offers a tighter feedback loop,

simplifying command adjustment. Microsoft’s Visual Basic®

program uses this method.

See: The Microsoft Windows Keyboard Guide for keyboard UI standards

and tips.

GRAPHIC OF PROPERTY SHEET

 Move and Size Commands. Most system menus support Move

and Size operations using keyboard commands. These commands

and the UI can be used for application-specific objects on the

normal menu bar or the object’s context menu.

http://www.microsoft.com/enable/training/keyboard.htm

The Microsoft Windows Guidelines for Accessible Software Design 14

Figure 7 - Move and Size commands on control menu (detail)

 Navigating Between Objects - Windows Help enables the TAB key

to move through a list of active regions or ―hot spots‖, and the

ENTER key to select an active region. The SHIFT+TAB key

combination is used to move backwards through the list and the

ARROW keys control directional movement (especially useful with

two dimensional presentations). This application design allows users

to move to the next active region by typing one or more label letters,

similar to moving through standard list box entries.

 Navigating Between Window Areas - Some applications divide a

window into two or more panes and allow users to shift between

them with a simple keystroke. Windows Explorer can display three

panes in a single window: tree view, folder, and tool bar. The TAB

or the SHIFT+TAB key combination moves focus from pane to pane

and the arrow keys move the focus within each pane.

 Multiple Document Interface (MDI) - The F6 key and the

CTRL+F6 key combination moves focus between panes and child

windows, and allows users to move through a list of windows using

the Windows menu. Other applications use the CTRL+TAB or

CTRL+PAGE DOWN key combination to shift through groups of

panes or pages.

Keyboard Access Design Exceptions
Design an efficient, comprehensive keyboard interface that provides

access to all application features unless it is:

 Exceedingly difficult to use

 Infrequently used

 Too challenging for application designers to implement

Again, favor logic and common sense solutions when dialog boxes

become overly complex and unique access keys cannot be assigned.

Users have the option of reverting to tools that simulate mouse input –

using the keyboard or other input mechanisms – but these alternatives

are not a substitute for good keyboard interface design.

Example: A simple drag and drop operation requiring 40 keystrokes

might make an application accessible but not usable or user-friendly.

Blind users (in fact, all users) would find performing such an inherently

visual operation with keystrokes a difficult and frustrating process.

Comment [MJH9]: I am unsure what to do with

the exercises. Perhaps there should be an appendix

that contains exercises, test questions and a

developer/tester ―cheat sheet‖ containing a one-page

list of critical design considerations.

Comment [MJH10]: 6/8/99 I’m not sure what

Windows Help has to do with navigating between

objects. Plus, I don’t find a recommendation or

suggestion to the designer here.

Comment [MJH11]: 6/8/99 No clear

recommendation or suggestion. Either one of those

plus an example would make all this much clearer.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 15

Document the Keyboard Interface

Fully document the keyboard UI.
 Windows conventions need no

documentation.

Logo Requirement
Blindness / Dexterity

Without documentation, an application's keyboard commands and

mechanisms are useless, so all logo applications must include complete,

comprehensive documentation for the keyboard UI. If space is

unavailable in primary documentation, keyboard interface information

may be described elsewhere and cross-referenced.

Keyboard access should never be categorized as a niche or specialty

feature because many users prefer it. It is unnecessary to document

elements that follow accepted Windows conventions, such as standard

menus and controls.

Underline Access Keys

Provide underlined access keys for all
menus and controls.

 Required when Keyboard
Preference option is True.

 Not required when names change
dynamically or no unique characters
remain unused.

Future Logo

Requirement
Blindness / Dexterity

All menu items and controls should have underlined access letters. The

following illustration shows access keys on a File menu.

Figure 8 Calling out underlined access keys on a typical File menu.

Users are more likely to use access keys to speed up commonly

performed operations when familiar with an application. This adaptation

is even more prevalent among users who do not use a mouse, such as

those who are blind or have low vision.

Example: Screen review utilities present the elements of the UI

sequentially. Users must press the TAB key to read or hear each element

before deciding whether to press the TAB key again. Access keys speed

this process.

Access keys may be omitted in two situations:

 When there are no unused label characters. Either rename the

control or omit the access key if the command is not used often.

Comment [MJH12]: 6/9/99 Is there an accepted

definition of standard when used in this context?

Comment [MJH13]: 6/9/99 Are Access Keys

preferable to Shortcut Keys? From a programming

standpoint, there is a difference between Access

Keys and Keyboard Accelerators (Shortcut Keys).

An explanation of these differences might be

valuable here.

Comment [MJH14]: 6/9/99 Do all screen review

utilities use the TAB key for this purpose?

The Microsoft Windows Guidelines for Accessible Software Design 16

Example: The standard Sort Options dialog box has identical

controls for three sort criteria, making it difficult to assign

unique access keys.

 When users cannot predict a dynamic command set. The

standard OK, Cancel, and Apply buttons found on all property

sheets must not conflict with controls on a particular page.

Example: A context menu whose commands might vary. Context

menu commands can use non-conflicting access keys, but they

may be omitted if they might conflict with each other or when

users might expect a specific letter to be associated with a

different command.

When providing access keys for dialog box controls, designers must

ensure a static text control immediately precedes the object it labels in

the tab order. This ordering helps screen review utilities determine the

relationship between the control and its object.

Exposing Keyboard Focus

Expose the keyboard focus location within
a window

 Automatic for objects that are
separate windows

 Within a window, use Active
Accessibility
or cover an object’s bounding
rectangle with the system caret.

Logo Requirement

Blindness / Low Vision
Dexterity / Cognitive

Language

This section covers:

 Using Standard Windows and Controls

 Using Active Accessibility to Expose the Focus

 Using the System Caret to Expose the Focus

 Examples of Keyboard Focus Location

 Verification

Figure 9 Yes and No command buttons with focus rectangle on Yes

button

Many accessibility aids must identify the ―focus point‖– the area where

the user is currently working on the screen.

Example: Blind-access utilities describe active text or objects, screen-

magnification utilities pan to include them, enlarging that portion of the

screen. The utility rearranges multiple windows to avoid covering the

focus point.

When the operating system indicates a focus move to a window, menu,

or standard control, the accessibility aid can determine this location. But

Comment [MJH15]: 6/9/99 Shall we add a

screenshot of the Sort Options dialog box here to

drive this point home. Until I opened it myself, I

didn’t get the full impact of the recommendation.

Comment [MJH16]: 6/9/99 This whole

paragraph is the most important point in the section.

Perhaps we should highlight it, embolden it or box

it. Also, does the ordering ―help‖ or is it essential?

Comment [MJH17]: 6/9/99 ―Focus point‖ is

such an important issue, there should be a more

comprehensive definition here.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 17

when an application uses a different method of indicating the visual

focus within its window, such as highlighting an icon, a windowless

custom control or a cell in a spreadsheet, it is more difficult to determine

the location.

To be accessible, an application must use Active Accessibility or move

the system caret to make its focus location available to other programs in

the system.

Active Accessibility and moving the system caret are described in detail

below.

Using Standard Windows and Controls
The Windows operating system uses Active Accessibility, Windows

hooks, and window messages to inform accessibility aids which window

has the keyboard focus. No additional work is required for standard

Windows controls or any object that occupies an entire window.

Using Active Accessibility to Expose the Focus
Microsoft Active Accessibility is the preferred method of exposing the

location of the keyboard focus for custom controls.

More information about Active Accessibility is available at

http://microsoft.com/enable/ or from the Microsoft Developers Network

at http://msdn/

Applications must:

 Call NotifyWinEvent when the focus moves to an object that is not

an entire window.

 Handle the WM_GETOBJECT message when used to query the

focus object.

 For custom user interface elements that are exposed with Iaccessible

interface, be sure to support the Iaccessible::get_accFocus property.

Using the System Caret to Expose the Focus
The system caret is the blinking vertical bar users see when editing text.

It can be placed anywhere on the screen, in any shape or size, visible or

invisible. When invisible, it can indicate the focus location to

applications without obscuring onscreen information.

To make the system caret invisible, call the CreateCaret function to set

the caret’s size and shape and the SetCaretPos function to move it to the

visual focus indicator (highlighted cell, icon, button, etc.). The caret is

present, but invisible unless you explicitly make it visible.

When the focus is moved to a different sized object, the application

should call DestroyCaret, then CreateCaret to specify the new object

size. The system caret must cover the screen element’s bounding

rectangle, so screen magnification tools can zoom-in on it.

Applications should display focus and selection indicators only when

they are in the active window. When the window is no longer active, the

application should remove the visual indicator and call the

DestroyCaret function. While this step is not always necessary for

Win32 applications, it is a good standard practice.

Comment [MJH18]: 6/9/99 Again, a main point

that should be italicized, emboldened or boxed.

Your choice.

Comment [MJH19]: 6/10/99 What is involved

in using AA to expose focus. Do we need an

overview here?

Comment [MJH20]: 6/9/99 A brief description

of how to make the caret visible or invisible needed

here.

Comment [MJH21]: 6/9/99 Should we define or

elaborate upon selection indicators here?

Comment [MJH22]: 6/9/99 As we found out a

couple of weeks ago, DestroyCaret is triggered

automatically and the problems encountered in the

past have been fixed in subsequent versions. Is it

still good practice? If so, why?

http://msdn/

The Microsoft Windows Guidelines for Accessible Software Design 18

Examples of Keyboard Focus Location
Occasionally it may be difficult to determine the focus location.

Extended and discontiguous selection often confuses this designation,

but keyboard focus location should be considered independent of the

selection, even though an application normally links them.

The following examples explain this distinction by identifying and

indicating the correct keyboard focus location in an application:

 Insertion bars in text – When users move an insertion point within

text, it is usually drawn with a visible system caret. When the

application draws its own insertion point, it should still move the

system caret invisibly, tracking the visible insertion bar's location and

size.

Figure 10 - Text with a flashing insertion bar.

 Extended text selection – When a user makes an extended selection,

one end of the selection is the ―active‖ or moving end. This

represents the definitive keyboard focus location.

Example: To select three characters, start with the insertion bar in an

edit control, hold the SHIFT key down and press the right arrow three

times. The start point is the stationary end or the ―anchor‖. To the

right, the flashing caret marks the active end of the selection. By

holding the SHIFT key and pressing another arrow key, the active end

moves, indicating where the system caret should be placed.

Always display a visible insertion bar at the selection's active end to

provide users with its location.

Figure 11 - Flashing insertion bar at active end of character

selection (how is this shown?)

 On graphic objects – When users move the keyboard focus to a

graphic object, such as an icon or bitmap, applications should

position the system caret invisibly over that object so the caret’s

rectangle covers the entire image and its label.

Figure 4 - Icon with keyboard focus and selected Icon with text

labels.

 Within graphic objects – Occasionally, a single bitmap represents

several objects, such as a group of graphical buttons. Applications

indicate focus by highlighting a portion of the bitmap, drawing a dotted

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 19

rectangle over it or moving the mouse pointer. In addition to indicating

focus, the application should place the system caret invisibly over the

bitmap's ―hot spot‖ or the object being referenced.

 Simple custom controls – When an application draws simple custom

controls, such as a custom push button, the keyboard focus is associated

with the entire control. The system caret should cover that control

completely.

Note: Explicitly setting the caret location is necessary for windowless

custom controls only. Controls that are windows automatically take the

keyboard focus.

 Complex custom controls – A complex or composite control, such as a

list box, can position the focus on individual elements within a larger

control. When doing this, an application should indicate the element's

focus area with the system caret. Applications may recognize a

collection of items as a single control, but each item should be

considered a separate control element. The text for each element should

be drawn using the standard Windows function calls – such as

ExtTextOut – which can be seen by screen review utilities.

Figure 5 - Drop-down list box with dotted rectangle keyboard focus

on one item.

 Spreadsheets. Within a spreadsheet, the focus is usually placed on a

cell, rather than its content, as indicated by an emboldened cell border.

Applications should place the system caret over the entire cell. When

cell content editing begins, the application should indicate the content

text or graphics focus appropriately.

 Discontiguous selection. Discontiguous selection is usually supported

among discrete items, rather than in text. One item always has the

keyboard focus or was most recently selected by a mouse click. This

object should be covered by the system caret.

Example: Select an item in a folder or in Windows Explorer, hold down

the CTRL key and use the arrow keys to move the focus rectangle to a file

that is not part of the selection.

Figure 14 - Upper icon selected and highlighted with the focus color.

Lower icon has the keyboard focus as indicated by dotted focus

rectangle.

The Microsoft Windows Guidelines for Accessible Software Design 20

 Mouse-only objects. Although applications should provide keyboard

access for all functionality, some objects can only be manipulated or

selected using the mouse. In this case, regard an object, when selected,

as if it had received the keyboard focus and position the system caret

appropriately. Of course, when the actual keyboard focus moves, the

application must follow it, because the user's attention has moved away

from the mouse-only object.

Applications should:

 Use standard Windows functions to copy or erase text and graphics

– These include BitBlt, PatBlt, and StretchBlt. Use these functions

whether drawing to a screen or to an off-screen bitmap, because utilities

track text and graphics from the time drawn until copied to the screen.

 Avoid directly manipulating bitmaps – If an application directly

manipulates the memory associated with a device context (DC) and

bypasses Windows functions, screen review utilities will not recognize

bitmap changes.

Example: If an application draws text into a bitmap using a Windows

function call, then erases it by clearing the bitmap memory, the screen

review utility will assume the text is still present. If the bitmap is used

again for another operation, the text might be read even though it is no

longer visible to the user. Similarly, information copied from one bitmap

to another without using the Windows functions may be displayed

visually but unseen by the screen review utility.

 Avoid directly modifying the screen – The Windows application

programming interface (API) provides several tools for manipulating

bitmap or display pixels directly, such as DirectDraw, Display Control

Interface (DCI), WinG (DOES THIS REFERENCE NEED AN

UPDATE?), and the CreateDIBSection function.

Verification
Use the Active Accessibility SDK Magnifier accessory to verify that your

application responds to keyboard commands by displaying the focus area in

the Magnifier window. The Magnifier will be a standard accessory in future

versions of Windows and Windows NT.

The Active Accessibility SDK is available at http://microsoft.com/enable/.

Exposing Screen Elements

Allow other software to identify and manipulate
all user interface elements.

 Standard window classes and controls
support this requirement automatically,
when used correctly.

 Add additional support only when
creating custom window classes or
controls, or drawing content in the
window client area.

 Name every object, window, and
graphic properly.

Future Logo

Requirement
Blindness / Dexterity

Cognitive

This section covers:

Comment [MJH23]: 6/9/99 More importantly,

this seems to say not to use these tools? Is that the

case? My lack of tech background is showing here.

This is amibiguous.

http://microsoft.com/enable/

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 21

 Using Controls

 Naming Controls

 Naming Windows

 Identifying Windows By Function

 Identifying Images And Bitmapped Text

 Labeling Objects Clearly

 Drawing To The Screen

 Verification

Figure 15 - The Inspect tool displaying the properties of a command

button.

Many accessibility aids must identify and manipulate on-screen objects,

discrete objects (windows, controls, and menus) and document elements

(words, paragraphs, images, worksheets, and tables). Users who are

blind rely on screen review utilities to describe on-screen objects

verbally. These utilities articulate the name, type, and state of each

control.

Example: When a user tabs to a check box, a screen review utility might

respond with ―Quick Printing check box, checked.‖ Voice input utilities

and on-screen keyboards have similar functions: to identify and name

specific controls and to manipulate that control in response to user

commands.

Accessibility aids collect information about a control by evaluating its

window class. Standard controls support Active Accessibility, which

exposes all relevant information through a single standard interface.

Non-standard controls can render an application unusable for users who

rely on accessibility aids unless the application supports active

accessibility.

Screen review utilities must also assess document content before reading

it aloud or describing where the user is working within the document.

Example: Sighted users can see spreadsheet headings (in rows and

columns) to identify the active cell. But a blind-access utility would need

to respond to ―C5‖ because the cell functions as a custom control

embedded in a table, which functions as a complex custom control.

Using Controls
The following sections provide more information about working with

these screen elements:

 Standard Windows controls – including Windows Common

Controls

 Superclassed or Subclassed standard controls – a standard

Windows control with customized behavior

Comment [MJH24]: 6/9/99 We need a better

differentiation between on-screen objects and

discrete objects.

Comment [MJH25]: What are we advising apps

to do with doc content. MSAA is not very helpful (at

least until MSAA is associated with doc content).

Comment [MJH26]: 6/10/99 Is this a more

correct or incorrect addition?

The Microsoft Windows Guidelines for Accessible Software Design 22

 Owner-drawn controls – operate like a standard control with

customized appearance

 Owner-drawn menus – normal menu behavior with customized

appearance

 Custom controls – implemented by an application without using the

normal Windows mechanisms (Visual Basic, ActiveX, and Java

controls)

 Text control - in controls and document areas

Standard Windows Controls

Use standard Windows controls and those provided by the Windows

Common Controls library whenever possible. Both are fully compatible

with accessibility aids.

Each standard Windows control is a separate window of a specific class,

so the accessibility aid can be notified when the focus moves to a new

control. The aid determines the control’s window class and designates

which additional control messages can be sent to query or alter its state.

Aids can also identify all child controls contained within a parent

window and also identify the parent window of any control.

Some Common Controls (list view, tree view controls, etc.) are flexible

and can replace many custom and owner-drawn controls. Example: A list

view can replace an owner-drawn list box to present a check box next to

each item. The new, enhanced button control can display images and

text, which was a common reason for using custom controls.

Owner-Drawn Controls

Owner-drawn controls can be accessible if used properly. Although

owner-drawn controls operate like standard controls, they may have a

customized appearance. Some applications use custom controls to

change its appearance, but owner-drawn controls are a more accessible

solution.

Example: An application can use an owner-drawn control to display an

X in a selected check box rather than a ―checkmark‖ , or label a

command button with a picture instead of a word. An owner-drawn

control using a standard Windows control appears normal to

accessibility aids and supports Active Accessibility, while presenting a

customized appearance.

Define all owner-drawn control labels, even when it will not be visible

on the screen. Owner-drawn controls with a "unreadable" normal

captions (graphic faced button) will be unidentifiable to the accessibility

aid if its caption is a blank string. Ensure that owner-drawn controls can

respond to all class-specific text retrieval messages, (CB_GETLBTEXT,

LB_GETTEXT). Set the appropriate style bits (CBS_HASSTRINGS,

LBS_HASSTRINGS) to indicate the owner-drawn control supports

those messages.

For more information about exposing owner-drawn controls, see the

Active Accessibility documentation.

Comment [MJH27]: Does this refer to the

checkbox in the list view?

Comment [MJH28]: 6/10/99 ―checkmark‖ and

―X‖ seem to have been reversed/

Comment [MJH29]: 6/10/99 I don’t find a

CB_GETKBTEXT listed. Could this be actually be

CB_GETLBTEXT?

Comment [MJH30]: 6/10/99 Add this here?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 23

Superclassed and Subclassed Controls

Some applications alter standard control behavior with techniques

known as superclassing and subclassing. An application with

superclassed and subclassed controls can add customized behaviors, but

the underlying system code for the standard control type handles basic

control functions, which supports Active Accessibility.

Superclassed and subclassed controls must respond to the normal

messages for their class. As with owner-drawn controls, label each

control properly, even if the label will not be visible on the screen. These

simple steps enable the control to successfully support Active

Accessibility.

Custom Controls

Custom controls include ActiveX controls, Java controls, and UI

elements drawn directly on the screen without an associated window.

Accessibility aids may have difficulty manipulating these custom

controls when identifying them by name, role, state, location, or

determining if they have the keyboard focus or selection.

Active Accessibility is based on the Component Object Model (COM),

the Microsoft developed, industry standard that defines a common way

for applications and operating systems to communicate. Active

Accessibility provides dynamic-link libraries (DLLs) that are

incorporated into the operating system as well as a COM interface and

application programming interface (API) elements that provide reliable

methods for exposing information about user interface elements.

Active Accessibility is the only effective way to make custom controls

compatible with accessibility aids. If an application cannot support

Active Accessibility, the following steps can help make controls

somewhat, but not fully, compatible with accessibility aids:

 If the custom control has its own window - Return a descriptive

string when the control is queried using the WM_GETTEXT

message.

Example: A button control labeled Print could return the string ―Print

button‖ to identify both control type and label. The same string

would be appropriate for a non-text labeled control graphic of a

printer. Similarly, a custom control that behaves like a check box

could return the caption string ―Printing Enabled check box,

checked.‖

 If the custom control has its own window - Support the

WM_GETDLGCODE message, identifying the keyboard input that

is supported.

 If the custom control has no window - Move the system caret to

communicate the focus location to accessibility aids as described in

the previous section titled ―Exposing Keyboard Focus.‖

Owner-Drawn Menus

Owner-drawn menus are incompatible with most accessibility aids that

must identify each menu item's name. There are two ways to overcome

this limitation:

Comment [MJH31]: 6/10/99 Same question

here as above.

Comment [MJH32]: 6/10/99 This, or a briefer

version seems necessary here.

The Microsoft Windows Guidelines for Accessible Software Design 24

 Expose the menu item name using the MSAAMENUINFO

structure. For more information, see the Active Accessibility

documentation.

 Provide an option to replace graphic menus with standard, text

menus when an accessibility aid is active. To test this, call:

SystemParametersInfo with the

SPI_GETSCREENREADER option.

People with cognitive disabilities can also benefit from an option to

show text, menu graphics, or both.

Example: A line width menu item might display a line sample and text

stating the width. This redundancy is also useful for people following

precise specifications. Make text/graphic duplication the default, or

allow users to select the text-menus option. This is the preferred choice

of Microsoft Developer Studio.

The following illustration contrasts an owner-drawn text and graphics

menu with a standard text-only menu.

Figure 16 - Left, owner-drawn Start menu displaying icons and text

- Right, the same controls rendered as a normal text only menu.

Using Text Controls

Screen review utilities must recognize text on the screen and in a

document. Text is normally displayed using the Windows drawing

functions, by copying images directly to the screen, or by using one of

several text controls.

The most accessible text presentation uses the standard Windows edit,

static, status, and HTML controls, all of which expose their text to

accessibility aids using Active Accessibility. The HTML control is the

best and easiest solution for displaying richly formatted text. All of the

above can be used without a visible border, to fit seamlessly into a UI.

Choosing the correct text control improves keyboard access to an

application and assures compatibility with accessibility aids.

For more information, see the Keyboard section of this document.

If you use graphic images that contain text, see

―Identifying Images and Bitmapped Text‖ in this document.

Comment [MJH33]: 6/9/99 Is it the Studio’s

preferred choice, recommendation or guideline? Can

we back this up? As it stands, I get no do/don’t do

instructions.

Comment [MJH34]: 6/9/99 Is this a verifiable

fact or opinion?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 25

Naming Controls

Figure 6 - Run dialog box, showing a static text control label for a

drop-down list box. Static text ends with a colon.

When using Windows dialog boxes, you must label all controls so that

accessibility aids can identify them. Labels are defined in two ways:

 The control’s caption text

 A separate static text control

Accessibility aids can easily identify controls such as buttons that display

defined caption text, but aids may have trouble identifying other controls

(such as edit controls and list boxes) labeled with separate static text

control. To ensure that these controls can be identified, provide

meaningful caption text even though it will not be displayed.

Additionally, to expose the relationship between a control and its static

text label, the static text must immediately precede the named control in

the dialog box TAB order. Correct tab order also allows a static text

control to define an underlined access key for the control it labels.

Naming Windows
Assign every window a user-friendly caption, whether visible or not on

the screen, so accessibility aids can clearly identify the window to the

user.

Every window can have a caption, whether it has a visible caption bar or

not. Set this string in your resource script, when calling CreateWindow

or related functions, or by calling SetWindowText. Accessibility aids

are then able to query the caption using Active Accessibility or the

WM_GETTEXT message.

This applies to all windows: top-level windows with visible frames, child

windows such as floating palettes, custom controls, toolbars, and panes

within a window when implemented as child windows.

Identifying Windows by Function
Identify each type of window by assigning unique window classes. This

identification should not change with subsequent versions of the

application or when translating to other languages.

Accessibility aids must have this identification to customize handling

different windows within the same application. There may be separate

instructions for handling these windows, such as announcing specific

areas when the content changes. While humans can identify a window by

its caption, accessibility aids must have an identifier that does not change

with different documents or languages.

Comment [MJH35]: 6/9/99 How? Are most

properties localized?

The Microsoft Windows Guidelines for Accessible Software Design 26

Identifying Images and Bitmapped Text
Screen review utilities must describe images on the screen to the user,

especially images that convey important information or have bitmapped

text. This is required only when a screen review utility is running and is

determined by calling: SystemParametersInfo with the

SPI_GETSCREENREADER value.

 Use Active Accessibility to expose the name and description of each

image.

 Use the standard Windows ToolTip control to apply a name or brief

description label to each image.

 Provide an option to replace the image with text.

 User manipulated images should be handled like controls.

Microsoft Internet Explorer supports the above mechanisms.

See: ―Identifying Images and Bitmapped Text‖ in this document for

more information.

Labeling Objects Clearly
Users with tunnel vision, or who require screen magnifiers, can see an

object and perhaps some of its immediate surroundings. Users who are

blind encountering the same object with Active Accessibility will have

only its name, its type, the name of the window and any group box it is

in, but none of the context provided by visual/spatial arrangements.

 Label objects with names that make sense when taken out of

context – Labels do not have to be long or detailed, but should be

logically descriptive.

 Avoid assigning multiple objects the same name – Example: Two

similarly named buttons on the same dialog

 Place objects in separate containers if duplicate name are

unavoidable – Example: Dialog box controls with the same name

should be enclosed in separate group boxes with unique names.

An example of displaying multiple controls with the same name is the

Keyboard page in the Accessibility Options section of Control Panel.

Drawing to the Screen
Active Accessibility, or one the alternate methods described above,

should be used to expose window content. When an application doesn’t

support the above methods, screen review utilities attempt to infer its

status by monitoring calls to drawing functions and storing the locations

of text and drawn graphics, and attributes such as font, size, color, and

style. They also rely on the ability to monitor normal Windows drawing

operations examining information copied from one location to another

and being erased or overwritten by other text or graphics.

If the above methods cannot be supported, use the following

recommendations to provide some degree of compatibility with screen

review utilities or provide an option to do so.

If an application uses any of these techniques when a screen review

utility is running, it should also use conventional methods for

performance. This can be determined by calling the

SystemParametersInfo function with the

SPI_GETSCREENREADER value.

Comment [MJH36]: 6/9/99 Definition here,

please.

Comment [MJH37]: 6/9/99 I can’t locate these

recommendations.

Comment [MJH38]: 6/10/99 The logic of the

first sentence seems reversed. Also, why would an

app use ―conventional methods‖ when the screen

utility is running? And while we’re at it - Does

conventional mean not using the previously listed

techniques?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 27

Verification
The Inspect Objects tool is included in the Active Accessibility SDK.

Hover the mouse pointer over portions of an application to determine if

the tool displays the proper description. Compare this description with

standard windows and controls to ensure they are the same.

Test applications by running accessibility aids to assure they work

together properly. Many accessibility utilities are available at no charge

or as trial versions.

More information about testing can be found in Appendix A of this

document.

For a catalog of these tools, go to: http://microsoft.com/enable/.

Color
Using color appropriately can significantly enhance a UI, but colorblind

users require that information is not conveyed by color alone. Color

should be used to enhance, emphasize, or reiterate information shown by

text, images or diagrams.

The most important aspect of using accessible color is using

SystemParametersInfo to responding to the Accessibility Options High

Contrast setting in Control Panel. This setting indicates that the screen

appearance has been modified for enhanced legibility.

This section covers:

 High Contrast Mode

 Making Colors Customizable

 Information Conveyed by Color Alone

 Text Obscured By Background Design Or Related Color

High Contrast Mode

When the High Contrast option is set:
 Display only user-selected or user-

customized system colors selected
through Control Panel.

 Simplify document sharing by
allowing users to adjust screen
colors drawn without altering the
document.

 Use correct foreground/background
color combinations.

 Omit background images drawn
behind text.

Logo Requirement

Figure 18 - High Contrast Black color scheme.

The Microsoft Windows Guidelines for Accessible Software Design 28

The screenshot above shows High Contrast text – light text on black

background – and a portion that is harder to read – black text on gray

background.

Basic color guidelines require conforming to standard system colors or

allowing user-chosen colors not defined by the system. When this is

unsuitable for the default configuration, users can choose high legibility

by enabling the High Contrast Accessibility Option in the Control Panel.

Required steps

 Use only customizable colors through the Control Panel or the

application’s view options. Documents are often shared, so it is

unacceptable to require document changes to display different text

and background colors.

 Use correct foreground/background color combinations.

 Omit complex backgrounds or images behind text and controls.

Additional recommendations
 Supplement information usually conveyed exclusively by color with

text, graphics, or patterns.

 Draw monochrome images with standard foreground/background

color combinations rather than multiple color images.

 Replace application-specific colors with Control Panel color

selections and use the fewest possible color combinations.

Exceptions

 Color selection palettes may continue to display the full range of

fixed colors.

 Applications are not responsible for altering the appearance of third-

party controls or embedded objects, unless shipped with the

application.

Procedure

 Applications can verify the High Contrast setting by calling the

SystemParametersInfo function with the

SPI_GETHIGHCONTRAST value. This value should be queried

during initialization and when processing WM_COLORCHANGE

messages.

 Call GetSysColors to identify the colors chosen through Control

Panel.

Making Colors Customizable
Color preference is a choice, but for low vision and color-blind users it is

a crucial choice. Many users require high contrast between text and

background or a particular scheme, such as white text on a black

background, to prevent the background from ―bleeding‖ over and

obscuring foreground text. Some people find the default color scheme

legible, but experience eyestrain after long viewing. In addition, nearly

23 million Americans (8% of male and 0.5% of female population), have

Comment [MJH39]: 6/9/99 Are there ―correct‖

colors or do we mean effective, appropriate or

suitable?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 29

some form of color blindness that makes certain color combinations

unreadable.

Some applications use fixed colors to prevent users from selecting an

unattractive color scheme, but users may have perception problems with

a fixed color scheme.

Using Control Panel Colors

Where possible, applications should conform to user-selected standard

system colors available through the Control Panel. This is simple when

an element in an application’s window corresponds to a usage handled

by Control Panel (window text, button face, dialog box text, etc.). User-

chosen color combinations reduce the possibility that preset colors will

make an application unusable, while ensuring its appearance and

readability is pleasing to the user without providing a color-adjusting

interface.

For a complete list of system colors, see the GetSysColors function

description in the Microsoft Win32 Software Development Kit (SDK).

The color and use selected in Control Panel do not need to correspond

exactly. Example: The user’s choice of window text color and

background is probably a safe combination to use for any purpose.

Using Private Colors

Figure 19 - Internet Explorer dialog box that allows link color

adjustment.

If application elements use colors that do not correspond to Control

Panel selected system colors, provide a method for color adjustment.

Example: When designing a calendar application with various

background colors to indicate different events, allow the user to select

the colors.

If an application cannot provide a UI for customizing colors, support a

registry key that selects the colors and provide a .REG file users can edit

to adjust these settings.

Using Proper Color Combinations

Applications should always use system colors in the correct foreground-

background combination to provide contrast. Users would not logically

choose the same button text (COLOR_BTNTEXT) and button face color

(COLOR_BTNFACE, COLOR_3DFACE), so this combination will

always be legible. However, a user might alter the color scheme so

normally contrasting system colors, such as button text and window

background (COLOR_WINDOW), are the same. If an application draws

The Microsoft Windows Guidelines for Accessible Software Design 30

using colors not specifically designed for combining, the information

may be unreadable.

Applications should always draw foreground objects in foreground

colors and fill backgrounds with background colors. Many users require

specific high-contrast combinations, such as white text on a black

background. Drawing these reversed, as black text on a white

background, causes the background to ―bleed‖ over the foreground and

can make reading difficult, even painful, for some users.

The following list shows safe and unsafe onscreen combinations.

Combination Status

Window Text on Window Background Safe

Button Text on Button Face Safe

Window Text on Button Face Unsafe to mix unrelated colors

Button Text on Window Background Unsafe to mix unrelated colors

Window Background on Window Text Unsafe to reverse colors

Button Face on Button Text Unsafe to reverse colors

These rules also apply when allocating user-select private colors in an

application. Draw foreground objects in user-selected foreground colors

and background objects in user-selected background colors.

Coloring Graphic Objects

Graphic objects present special challenges.

Example: Some application display buttons use pictures, text, or both.

The following scenarios describe how Control Panel color-selection

affects these variables:

Monochrome image - A button face should always be drawn in the

standard system color, and the foreground image should be drawn in the

standard button text color. If the image is drawn within a window rather

than on a button, use COLOR_WINDOW and

COLOR_WINDOWTEXT values instead of the button colors.

Multicolored image - The simplest solution is to include an equivalent

monochrome image for use on monochrome displays, or that can be

supplied when the user chooses a non-default button face color or has

requests High Contrast Mode (described earlier in this document).

If an application cannot include monochrome images, modify

multicolored images by identifying light area as foreground and dark

areas as background.

Example: A bitmap having a multicolored object on a white background can be mapped

with all colors other than white in the appropriate system foreground color and white in

the system background color. This relationship may be reversed for images designed to

have a dark background.

Information Conveyed Exclusively by Color

Do not communicate important
information by color exclusively – provide
other options to receive this information.

Recommendation

Blindness / Low Vision

Comment [MJH40]: 6/9/99 I believe I

understand this correctly, but maybe we can say it

more clearly and succinctly.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 31

.

When an application conveys information by color exclusively, some

users will not be aware of the message. Even including an option to

customize colors is insufficient to remedy this situation if the user can

only read white text on a black background or is using a monochrome

display hand-held computer. To avoid this limitation, applications

should make all displayed information available by other means, even

when the user has an option to choose the colors.

One option is to provide patterns as an alternative to colors. In the above

calendar /color example, users could be given a choice of patterns along

with colors for each scheduled event. This would supply color

combinations that "read", while offering additional background pattern

information. Ensure that the patterned background does not interfere

with the readability of the text.

Text Obscured by Background design or related color

Figure 20 – An example of difficult to read text. Numbers formed by

low contrast color dots on a spotted background of related low

contrast colors.

Text is most legible when drawn against a plain contrasting color

background. Text drawn over a variegated background, such as a wash

of colors or bitmap, may be unreadable to many users. Always provide

users with the option of omitting the image and reverting to a bare

background.

 Provide a menu or dialog box option to omit complex backgrounds.

 Omit the background in response to the High Contrast setting as

discussed earlier in this section.

 Omit background images if the foreground color changes or consists

of mixed colors.

Example: Text drawn over a very light bitmap image can appear

legible in the default color scheme, but appear unreadable when a

user chooses a light foreground text color.

 Use backgrounds that contrast well with text. Example: Many users

find it hard to read black text drawn over gray, brown, or other dark

backgrounds. This applies to all backgrounds, even when there is an

option to omit them.

Strategies for addressing this guideline basically revolve around

eliminating the requirement that a person see color to operate the device.

This does not eliminate the use of color in any way as long as the

information conveyed by the color is also conveyed in some other

fashion. In addition, there are a number of things that can be done to

allow even individuals with color anomalies to be able to take advantage

Comment [MJH41]: I can’t find this example

among the original graphics.

The Microsoft Windows Guidelines for Accessible Software Design 32

of the color-coded information. First, there are a number of common

pairs of colors that are indistinguishable by people with color perception

anomalies. (And those pairs are?)

Avoiding these color pairs avoids or reduces the problems for these

individuals. In addition, as long as the colors have different hues and

intensity, differently colored objects can be distinguished even on a

black and white screen by their different appearance. Depending upon

the product, the manufacturer may also be able to allow the user to adjust

colors to match their preferences and visual abilities. It is generally a

good idea to also avoid muted colors with a low luminance value

(intensity).

Size

Figure 7 - Control Panel (detail) with extra large High Contrast

Black option selected. Icons, icon titles, menu text, and title bar text

are all larger than normal.

Some users prefer to display a lot of information on a single screen, but

millions of users have difficulty reading small text or identifying and

clicking on small objects.

Present several options when sizing objects on the screen.

System Size Settings

Applications must comply with user-chosen
size and font system settings.

Logo Requirement

Dexterity / Low Vision

Screen element dimensions should reflect user-selected Control Panel

size settings (scroll bars, custom menus, etc.). Example: A custom dialog

box should use the system's user-selected dialog box font to display text.

This section covers:

 Avoiding Small Fixed Fonts

 Line Width Minimums

 Supporting Adjustable Fonts

 Scaling Non-document Regions

 Global Scaling

 Alternatives to WYSIWYG

 Adjusting Images

 Avoiding Font Dependencies

The following GetSystemMetrics and SystemParametersInfo

descriptions are available in the Win32 SDK.

Comment [MJH42]: Do you have a preference

or shall I draw them from the Encarta reference?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 33

Applications must3 comply with the following font and size system

settings:

Required Size Settings

SM_CYFIXEDFRAME SM_CXFIXEDFRAME

SM_CYDLGFRAME SM_CXDLGFRAME

SM_CYMENUSIZE SM_CXMENUSIZE

SM_CYSIZEFRAME SM_CXSIZEFRAME

SM_CYFRAME SM_CXFRAME

SM_CYVSCROLL SM_CXVSCROLL

SM_CYMENU SM_CYCAPTION

SPI_GETICONTITLELOGFONT SM_CYSMCAPTION

SPI_GETNONCLIENTMETRICS SPI_GETBORDER

SPI_GETWORKAREA

Applications should comply with the following recommended system

size settings where pertinent:

Recommended Size Settings

SM_CXICONSPACING SM_CYICONSPACING

SM_CXMENUCHECK SM_CYMENUCHECK
SPI_ICONHORIZONTALSPACING SPI_ICONVERTICALSPACING

SM_CXICON SM_CYICON

SM_CXSIZE SM_CYSIZE

SM_CXSMSIZE SM_CYSMSIZE

SPI_GETICONTITLEWRAP SPI_GETICONMETRICS

Verification

Choose the ―Windows Default (extra-large)‖ scheme on the Control

Panel, Display, Appearance page to confirm that:

 The application adopts the size settings

 Onscreen information is not lost or unintelligible

 The application still fully usable

Avoid Small Fixed Fonts

Avoid hard coding any font sizes smaller than
10 points.

Future Logo

Requirement
Low Vision

Small fonts can cause eyestrain and are difficult for many people to read.

If you can read this unaided, you have better eyesight than many of your customers

Figure 8 – Tiny typeface reading: “If you can read this unaided, you

have better eyesight than many of your customers.”

 Line Width
Although many applications draw fixed lines that are one pixel wide,

these disappear on high-resolution monitors and can be imperceptible to

users with low vision. Rather than using fixed widths, determine the

correct line thickness by calling the GetSystemMetrics function with

the SM_CXBORDER and SM_CYBORDER values. These values are

The Microsoft Windows Guidelines for Accessible Software Design 34

defined with regard to the system's monitor resolution. Future Microsoft

operating systems will allow users to adjust these settings appropriately

for their vision.

Support Adjustable Fonts
Users who prefer small type or require larger type appreciate the ability

to choose the typeface and size. This simple option makes applications

much more useable.

The preferred selection method is to provide font choices through a

menu option or property sheet. To display the standard Font dialog box,

call ChooseFont. If text drawn with a user-requested font forces

information to extend beyond the window's edge, make the window

resizable and display scroll bars.

Another method is to resize fonts automatically when the window is

resized, but this prevents large font selection in a small window with

scroll bars.

Scale Non-document Regions
Many application windows contain a user-created document image and

one or more application panes.

Fixed size buttons, rulers, toolbars, palettes, navigation bars, and status

bars can present usability and accessibility problems. Where possible,

allow users to independently select a size or zoom ratio for each non-

document region.

Example: A ―Toolbar Size‖ option would allow users to size all toolbar

buttons.

Global Scaling

Allow for changes to system font size and
pixels per logical inch.
 Avoid drawing with the MM_TEXT

mode.
 Stretch, shrink, pad, or crop images to

fit available space.

Future Logo
Requirement

Dexterity / Low Vision

Windows provides a Custom Font Size feature in the Control Panel,

Display section that allows users to scale all fonts and most other on-

screen elements globally by changing the number of pixels per ―logical

inch.‖

To be compatible, applications must avoid drawing in MM_TEXT

mode, which bypasses logical scaling. Onscreen interface elements using

MM_TEXT will be drawn out of proportion to non-MM_TEXT screen

elements.

Note: The Custom Font Size feature does not automatically scale

bitmaps. See: ―Adjusting Images.‖

Alternatives to WYSIWYG
Applications offering a WYSIWYG (What You See Is What You Get)

document view, present onscreen text as it will appear when printed, but

this may not always be appropriate or desired.

Comment [MJH43]: Is this true? We need to

state which mapping mode (MM_ISOTROPIC) to

use. Plus we need information on setting the scaling

factors (with window + viewpost extents)

Comment [MJH44]: 6/9/99 MM_TEXT is the

default mapping mode (and easiest to use) so which

mapping should be used? I’m not seeing a choice

here.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 35

Example: Preparing to print small font text, but requiring a larger font

display for editing. Draft mode, zoom features and wrap to window

options are simple methods for users to size on-screen information.

 Draft mode provides the option of displaying all text in a single font

and size. If possible, allow users to select these settings and employ

underlining or similar denotation to indicate special formatted text,

such as bold or italics. Draft mode also improves application

performance on slow or reduced memory systems.

 Zoom features - scale all document elements to a user-selected ratio.

Many applications, (including Microsoft Word and Microsoft Excel)

offer this feature, benefiting many users who do not consider

themselves disabled. Use TrueType scalable font technology to

ensure clearly defined characters at virtually any size.

 Wrap to window options - allow users to ignore normal line breaks

in text documents. Applications should not break onscreen lines to

emulate the printed page.

Adjust Images
Occasionally a graphic image must conform to a different space than

originally intended. If users adjust the Custom Font Size global scaling

constant or if an application allows users to choose a differently sized

font, the application drawn image could appear out of scale with the rest

of the window. Solution: Change how the bitmap is drawn to the screen

or use an alternative to bitmaps.

How to adapt a bitmap when changing font size:

 Stretch or shrink – Scale the bitmap ―at run time‖ using the

StretchBlt function to size it appropriately for its screen location.

 Pad – If stretching is not an option, draw the bitmap normal size

and leave blank space around it. To prevent the bitmap’s ―blank

frame‖ from displaying older, unrelated information, erase the area

to the appropriate background color. Use a mapping mode other

than MM_TEXT to specify the frame size so it will automatically

adjust the global scaling factors.

 Crop – If shrinking is not an option, clip the bitmap to fit the

surrounding rectangle.

Example: When the Custom Font Size feature global scaling ratio is

less than 100%, specify size using a mapping mode other than

MM_TEXT to automatically adjust the global scaling factor.

Bitmap alternatives that adjust easily to different spaces:

 Metafiles - A convenient way to encapsulate images for easy

playback, can be scaled automatically to fit a destination rectangle,

and usually look good at any size.

 Drawing on the fly – For simple images that do not require

encapsulation for storage and playback, create a routine that draws

―on the fly‖ using Windows’ graphic functions.

 TrueType glyphs - Although glyphs can represent an image, using

them can be costly unless created in-house. Custom TrueType

glyphs are not recognized by accessibility aids, so it is important to

label the graphic properly, as outlined earlier. See: ―Identifying

Images and Bitmapped Text‖ in this document.

Comment [MJH45]: MM_HNISOTROPIC or

MM_ISOTROPIC?

Comment [MJH46]: MM_HNISOTROPIC or

MM_ISOTROPIC?

The Microsoft Windows Guidelines for Accessible Software Design 36

Avoiding Font Dependencies
Some application dialog boxes are so tightly spaced they look unsightly

when users change the dialog box font. Leave enough white space in

dialog box layouts to accommodate moderate font changes that make the

dialog box easier to read. Extra space also makes an application easier to

localize into other languages.

Some developers have expressed concern that changing the font can

cause a dialog box to scale incorrectly, but this rarely occurs. Windows

automatically positions dialog box controls based on the size of the

dialog box font.

Changing fonts can be a problem when an application draws directly into

elements of a dialog box.

Example: Applications that create a static control and draw over it to

effect a custom design element. This element can appear incorrectly if

the static control size is scaled to match a new dialog box font size.

Avoid these problems by determining the proper location and size at run

time.

Some applications include specific dialog box fonts rather than relying

on the user-selected system dialog box font, but this can cause problems.

Allow users to select this font or change its size to match the currently

selected system font. See the ―Color‖ section of this document.

Sound
This section covers:

 Sound Alternatives

 Making Sounds Customizable

 Reinforcing Sounds and Visuals

 Turning Sounds Off

Figure 27 - Control Panel section displaying ShowSounds option.

Appropriate sound communications can benefit a wide range of people

with disabilities, but not when used exclusively. Users may be:

 Deaf or hard-of-hearing

 Working in a noisy environment - airplane, workshop, crowded

office, etc.

 Working in a quiet environment where sounds are inappropriate

- office, conference, library, etc.

Sound Alternatives

Do not present important information

Comment [MJH47]: 6/9/99 Examples? Or at

the least, the type of problems.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 37

exclusively by sound.
 Provide a visual presentation option
 Display information visually when the

ShowSounds option is True.
 Do not disable sounds automatically.
 Provide closed captions or transcripts for

all audio content.

Future Logo

Requirement
Hearing / Cognitive

Language

Supporting the ShowSounds Option

By choosing the ShowSounds option in the Accessibility section of the

Control Panel, users indicate that important information must be

displayed visually - the equivalent of closed captions for sound cues.

Applications check the ShowSounds flag by calling the

SystemParametersInfo function with the SPI_GETSHOWSOUNDS

value.

Using the ShowSounds flag does preclude normal sound presentation; in

fact, redundant sound and visual information increases an application’s

usability. Users should have the option of requesting visual or audible

feedback independently.

The ShowSounds flag applies only to applications that usually present

important information exclusively with sounds. Applications are

responsible for determining how this information appears visually. The

following examples outline specific situations and sound solutions:

Types of Sounds

Application sound cues can be divided into four general categories:

 Important sounds convey information not presented visually, but

are important to the application’s operation.

Example: Audio wave files with narrative instructions or a ―new

mail‖ arrival notification.

 Redundant alerts accompany the visual presentation of

information and attract a user’s attention when not watching the

computer screen.

Example: An optional beep that accompanies a message box.

 Redundant sounds repeat information presented visually, but are

not required to use the application properly.

Example: An error sound or beep when a user moves beyond the

end of a list box.

 Decorative sounds enhance an application’s presentation or

appearance, but are not required for operation.

Example: Sounds that accompany minimizing a window or

activating a menu and background sounds, thematic music or

sound effects in multimedia games.

Users who cannot hear redundant or decorative sounds are not

disadvantaged, but conveying important sounds and redundant alerts

is essential.

The Microsoft Windows Guidelines for Accessible Software Design 38

For redundant alerts, users can select the Windows SoundSentry

feature. This utility displays a generic visual indicator when it detects

the computer producing a "signal sound." This is acceptable when the

sound is simply a warning to attract the user's attention, but

insufficient when an application uses various sounds to convey

complex information.

Applications must adopt alternative methods of conveying important

sounds and complex information.

Playing Audible Alerts

To attract attention, as when new email arrives, an application should

use one of the following techniques:

 Flash the title bar by using the FlashWindow function. If

the window is not visible, the application’s button on the

taskbar will flash.

 Display a message box that acquires the activation and

keyboard focus. This is a viable option unless the user is

typing into another application at the time.

 Display a status indicator on the notification area of the

taskbar. This indicator should flash when initially displayed to

attract the user’s attention.

Playing Redundant Sounds

Applications often produce an error status sound, such as when a user

types an invalid character. In this case, an application can flash its title

bar or application button on the taskbar, using the FlashWindow

function.

Displaying Closed Captions for Video and Audio

Applications displaying multimedia animation, video clips or audio clips

should support the ShowSounds flag with true closed captioning, if the

clip has necessary information on the audio track.

There are four closed captioning options:

 Microsoft DirectPlay (formerly ActiveMovie 2.0) is an easy way to

create and display closed captions for many types of digital media.

See: http://microsoft.com/directx/.

 Microsoft Video for Windows is an older technology used to create

a separate, synchronized caption data stream the application can then

use for screen display.

 Private mechanisms - custom designed application technologies for

presenting multimedia content.

 Transcripts - non-synchronized screen display of audio track

content. While acceptable for short audio pieces, this is not suitable

for long audio pieces or closely synchronized audio and video.

Making Sounds Customizable
The Control Panel allows users to customize the sound scheme to play

more, fewer, or no sounds for specific events such as an error, warning,

or menu item selection. Windows automatically conforms to these

Comment [MJH48]: Does this really work?

Comment [MJH49]: 6/9/99 Are we talking

about SAMI here?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 39

preferences when carrying out the associated event. Applications should

call PlaySound to trigger sound events.

The following guidelines apply to all audio events:

 Always play sounds by specifying a registry entry. (Use the

SND_ALIAS value.) This allows users to customize sound

associations through Control Panel. Accessibility aids can use the

name provided in the registry to describe the event.

 Trigger standard sound events when carrying out equivalent

actions.

Example: When displaying the equivalent of an urgent message box,

play the SND_ALIAS_SYSTEMEXCLAMATION event, consistent

with the Windows environment.

 Define as many application-specific sound events as possible -

This allows most events to be silent by default, but lets users desiring

additional feedback to add appropriate sounds through the Control

Panel. This option is especially useful for people with low vision or

certain cognitive impairments.

 Avoid specifying sounds by filename or resource - These cannot

be customized through Control Panel and accessibility aids are

unable to determine the applicability of sounds specified by filename

or resource.

 See: The Win32 Software Development Kit (SDK), ―Playing Sounds

Specified in the Registry‖

Reinforcing Sounds and Visuals
Redundant sound and visual cues generally increase an application's

usability.

Example: A status indicator on the screen should produce an audible cue

when it changes. Conversely, appropriate words or graphic changes on

the screen should accompany Web page start sound. Users should be

able to request simultaneous or independent visual and audible feedback.

Turning Sounds Off
Users should have the option of turning off application sounds to avoid

distracting people who are hard-of-hearing (mis-interpreting sounds for

conversation), or when such sounds would be inappropriate (crowded

offices, public environments, libraries, etc). This is especially true of

non-essential or redundant sounds that are supplemental to on-screen

information. People who are deaf or hard-of-hearing appreciate this

option because it prevents unnecessarily disturbing people in their

proximity.

To compensate for not providing an option to turn off sounds, check the

SM_BEEP option using the GetSystemMetrics function. If FALSE, the

user has chosen to disable the standard system beep, and implies that

other sounds should also be turned off.

Sounds played by calling PlaySound and specifying a registry-based

sound event do not require additional adaptation, because users can turn

them off by changing the Control Panel sound scheme.

Comment [GCL50]: Page: 37

 7/21/97: Add code fragment.

Comment [MJH51]: 6/9/99 I think this is what

you were suggesting.

The Microsoft Windows Guidelines for Accessible Software Design 40

Timings

Allow user-customized interface timings.
 Provide an option to avoid timed out
messages.
 Allow slowing or disabling of flashing
screen updates.

Future Logo

Requirement
Blindness / Low Vision

Dexterity / Cognitive
Language / Seizures

Figure 9 - Illustration of mouse and stopwatch

Some users have difficulty reading briefly displayed information, or

encounter problems when performing tasks that require quick reflexes.

All timed events should be user-adjustable.

This section covers:

 Input Timings

 Time Limits

 Rapid Flashing

Input Timings
Some users with relatively slow reaction times have difficulty using

fixed-timing features such as:

 Automatic scrolling when users drag an object towards the edge

of a window

 Holding down the mouse button while the pointer is over a scroll

bar

 Applications that react quickly when the keyboard focus remains

on an object, frustrating users who navigate slowly.

Several ways to adjust timing parameters are:

 Use a system setting - Applications can synchronize timed behavior

to a user-specified Control Panel input timing setting.

Example: Double-click speed and the amount of time focus remains

on a cascading menu before the child menu is displayed.

 Provide a timing option - Applications can provide a menu or

dialog box option to adjust the timing with settings stored in the

registry's user-preferences section.

 Provide a registry setting - If a user-customized timings interface

cannot be provided, support the option using a registry key and

provide a .REG file that can edit to adjust this setting.

Time Limits
Avoid having messages time out or provide a time-out override option.

There are several reasons why users may not notice a briefly displayed

message:

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 41

 Users who read slowly because of lack of practice, cognitive

disabilities, or when working in a second language

 Users who rely on screen magnification utilities have to locate

information on the screen

 Users who respond slowly due to impaired dexterity

If a message is important, it should be displayed until the user dismisses

it deliberately. Even if a message is unimportant, it is disconcerting to

the user for it to disappear before it can be read, leaving a doubt that it

may have been a necessary alert.

Rapid Flashing

Allow users to slow or disable rapid
flashing or updates.

Recommendation

Seizures

If a user is prone to epileptic episodes, rapid visual changes can induce a

seizure. Other stimuli include visual signals flashing on and off and

different images being displayed repeatedly. Because individual

susceptibility to this condition varies widely, it is impossible to eliminate

the risk of triggering some seizures. The following precautions reduce

the risk of triggering seizures:

 Provide an option to slow or stop flashing. Recommended

solution.

 Avoid very rapid flashing. Flash rates of more than five times per

second affect more people.

 Avoid flashing large areas. Small areas, such as the flashing

insertion bar, are less likely to trigger seizures than larger flashing

areas.

 Avoid high contrast flashing. Decrease image brightness ratio to

reduce seizure risk.

 Avoid multiple, simultaneous on-screen changes. Several quickly

changing, non-synchronized objects can produce the same effect as a

single large image flashing much more rapidly.

Several methods allow the user to adjust object flash speed:

 Use the Caret blink rate. An easy solution is to synchronize object

flash rate with the Control Panel’s user-selected caret blink rate. To

query this setting, call: GetCaretBlinkTime.

 Offer a timing option. Provide a menu or dialog box option to

adjust the timing. These settings should be stored in the user-

preferences section of the registry.

 Provide a registry setting. If a user-customized timing interface is

not provided, support this option with a registry key and a .REG file

to adjust the setting.

Unexpected Side Effects

Allow mouse movement and keyboard
navigation without triggering unexpected
side effects.

Future Logo

Requirement
Blindness / Low Vision

Comment [MJH52]: How would this be

accomplished?

The Microsoft Windows Guidelines for Accessible Software Design 42

Dexterity / Cognitive

Some users who rely on accessibility aids must move the mouse or

keyboard focus to explore the information on the screen. These actions

should not trigger unexpected side effects.

This section covers:

 Side Effects of Mouse Movement

 Side Effects of Keyboard Focus Movement

Side Effects of Mouse Movement
Avoid triggering events when the mouse pointer moves onto or off a

special area. If triggering must be included, it must be made optional.

Some accessibility aids require mouse pointer movement when

information is explored on the screen.

Example: A screen review utility may move the mouse to follow words

being read, or a user may need to move the mouse to enlarge specific

text. If text appears when the mouse moves over an object and

disappears when the mouse moves off it, the text virtually disappears as

the user attempts to read it!

There are two situations where mouse pointer movement-triggered

changes are acceptable. These exceptions are currently managed by

accessibility aids and are handled appropriately:

 Pointer shape - It is acceptable to change the shape of the mouse

pointer as it moves.

Example: Pointer shape may change to indicate an object is a valid

drop target.

 ToolTips - It is acceptable, and encouraged, to use ToolTip controls

to display explanatory information when the pointer is paused over an

object. However, this exception applies only if a standard ToolTip

control is used.

Side Effects of Keyboard Focus Movement
Avoid triggering events when keyboard focus moves. If triggering is

necessary, it must be made optional.

To allow users to read or explore the content of a window, support

keyboard mechanisms that allow uninterrupted focus change to a control

or an area.

Example: Blind users use the TAB key to move through all dialog box

controls, exploring options before returning to the appropriate choice.

For accessibility aids to work appropriately, include standardized

application behaviors and mechanisms in the following situations:

 Explanatory text – Applications may display explanatory text giving

menu function details while processing menu messages. Although it

is preferable to draw this text in a status bar for compatibility with

other applications, any text drawn during menu processing will be

assumed to serve this function.

 Radio buttons - Applications may automatically change option

control, such as radio buttons, values and tab controls during

Comment [MJH53]: 6/9/99 Does this mean

MSAA Win Events, other types of events or both?

Comment [MJH54]: 6/9/99 I am unclear about

the import of this statement. Optional, necessary

events?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 43

keyboard navigation. Although this behavior can cause problems for

keyboard users, it is necessary for backward compatibility.

 Providing alternatives - Applications that react to focus movement

should provide an alternative way to move the focus. This is

commonly accomplished by using the CTRL key to modify a

navigation key.

Example: In Windows Explorer, or in list boxes that support

discontiguous selection, users can move the focus and change the

selection when navigating with an arrow key. However, users can

move the focus without changing the selection by holding down the

CTRL key when pressing an arrow key. This keyboard action is

supported by radio buttons in Microsoft Office.

Mouse Input
Mouse input should not be required, but well-designed mouse support

makes applications easier to use for many people.

This section covers:

 System Mouse Settings

 Well-designed Mouse Shortcuts

System Mouse Settings

Applications must be compatible with
specified system mouse input settings.

Logo Requirement

Dexterity

Applications must comply with the following system mouse input

settings:

Required Mouse Settings

SM_CYDOUBLECLK,

SPI_CXDOUBLECLK

Height and width of target

rectangle for double-click

SM_CYDRAG, SM_CXDRAG Height and width of target

rectangle on a drag point

SPI_GETMOUSEHOVERHEIGHT Height of mouse target rectangle

SPI_GETMOUSEHOVERTIME

Mouse hover time in target

rectangle

SPI_GETMOUSEHOVERWIDTH

Width of mouse pointer target

rectangle

It is recommended, but not required, that applications comply with the

following system settings:

Recommended Mouse Settings

SPI_GETMOUSE Threshold values plus acceleration

SPI_GETMOUSEKEYS MouseKeys accessibility feature

SPI_GETMOUSESPEED Mouse speed

SPI_GETMOUSETRAILS Mouse Trails feature enabled or

disabled

SPI_GETACTIVEWINDOWTRACKING Active window tracking

(mouse activating)

Comment [MJH55]: 6/9/99 Do we need to

explain this backward compatibility further?

Comment [MJH56]: 6/9/99 Is keyboard action

what we should be referring to here?

The Microsoft Windows Guidelines for Accessible Software Design 44

SM_MOUSEPRESENT Mouse installed

SM_MOUSEWHEELPRESENT Mouse with wheel installed

SPI_GETWHEELSCROLLLINES Lines scrolled / mouse wheel

rotation

SM_SWAPBUTTON Left/right mouse buttons swapped

Well-designed Mouse Shortcuts
The following steps make it easier for people to use your application:

 Provide mouse shortcuts for commonly used features. Providing

good mouse support makes an application easier for most users,

especially those who can only use a pointing device. Text can be

entered using on-screen keyboard utilities, but is less efficient and

convenient than using mouse shortcuts.

 Support simple mouse operations. Some users have difficulty

double-clicking, so, where possible, require only single-clicks for

common operations. Some users have trouble holding down the

mouse button while moving it, making drag-and-drop operations

difficult. Also, avoid requiring secondary mouse button input because

some pointing devices and many alternative accessibility devices do

not support it.

 Provide customizable toolbars. Allow user-created, mouse shortcut-

activated commands that would normally require keyboard input or

multiple mouse clicks.

 Do not require mouse input for any feature. See

―Keyboard Access‖ in this document.

Customizable User Interface

Where possible, allow users and/or
administrators to customize the application.

Recommendation
Blindness / Dexterity

Cognitive / Language

Applications can be adapted to the needs of a group or individual with

customizable keyboard commands, menus, dialog boxes, and toolbars.

This section covers:

 Approaches to Customization

 Customization Areas

Approaches to Customization
The following user-preference options reduce application complexity

and improve feature access:

 Detailed customization – When users can configure individual menu

items and commands.

Example: Hiding the toolbar or status bar.

 Schemes – When users can partially re-configure the interface.

Example: Offering the choice of advanced, intermediate, or novice

menus.

 Macro capabilities – When users can create custom dialog boxes to

supplement or replace existing functionality.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 45

Customization Areas
The following types of customization benefit many users:

 Omitting extraneous graphics - Provide an option to hide graphics

that do not convey necessary information.

Example: Option button icons can be hidden if the button function is

described by accompanying text. While most users find graphical

"decoration" useful, users with cognitive disabilities require a

simpler interface with less visual distraction.

 Customizing dialog boxes - Commonly supported by macro or

scripting language.

 Customizable menus / Customizable keyboard shortcuts - See

―Keyboard Access‖ in this document.

Layout
Several visual design and layout guidelines improve an application's

usability and accessibility for people with cognitive or visual

impairments.

This section covers:

 Naming Controls

 Labeling Icons

 Related Item Proximity

Naming Controls
Accessibility aids can identify buttons and other text labeled controls,

but edit controls or graphical objects are typically labeled by a nearby

static control.

To make controls easier to use:

 Place a text label above, or to the immediate left of each control.

 Keep a control and its label close together.

 Set the Tab order so that the static text control immediately precedes

the control it labels.

 Do not place unlabeled controls beneath or to the left of a label.

 Every text label should end with a colon.

 Static text controls that do not label other controls should not end

with a colon.

 Do not use punctuation to create lines, boxes, decorative

embellishments, or ASCII ―art‖.

 Do not include non-functional (decorative) buttons or unlabeled

hotspots on the screen.

Comment [MJH57]: Does accompanying text

refer to a Tooltip or text label next to a button?

The Microsoft Windows Guidelines for Accessible Software Design 46

Labeling Icons

Figure 10 - Labels correctly positioned beneath large icons and to

the right of small icons. A ToolTip is shown hovering over a

graphical push button.

Icons, and graphics that represent an object or control, should always be

displayed with a text label. This text/graphic convention is familiar to

most users, helps new users learn application options quickly, and

provides information to screen review utilities.

These are the standard guidelines:

 Place text labels directly beneath large icons and immediately to the

right of small icons.

 Use Control Panel defined font, size, and color for title labels beneath

icons.

 Expose text labels that cannot be displayed visibly, with ToolTips or

other comparable techniques. See ―Exposing Screen Elements‖ in

this document.

Example: Start Windows Explorer from the Start menu and choose

Large Icons from the View menu.

Related Item Proximity

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 47

Arrange related items close to each other.

People with tunnel vision or low vision who

use a screen magnification utility, see only a

portion of the screen. Grouping related items

in close proximity eliminates the need to scan

for related items and makes these

associations clearer for all users.

The Microsoft Windows Guidelines for Accessible Software Design 48

Section 4 Summary of Recommendations
The following is an overview of software techniques to make

applications accessible to people with disabilities.

Figure 11 – Illustration of box with checkmark

Basic Principles
Follow these basic principles when designing an accessible application:

 Flexibility – Provide a flexible, customizable user interface (UI) that

accommodates user needs and preferences.

Example: Allow users to choose font sizes, reduce visual complexity,

and customize the menu arrangement.

 Choice of input methods – Support input method choice by

providing keyboard access to all features and simple mouse click

access for common tasks.

 Choice of output methods – Provide a choice of output methods by

supporting discrete and redundant combinations of sound, visuals,

visual text, and graphics.

 Consistency – Design the application to interact consistently with

other applications and system standards.

Example: Support Control Panel settings for colors and sizes and use

standard keyboard behavior.

 Compatibility with accessibility aids - Use programming

techniques and user-interface elements compatible with accessibility

aids (blind access, screen magnification, and voice-input utilities).

Requirement and recommendation ratings are, from low () to high

(), are based on:

 The number of people affected by the adaptation

 The impact an adaptation has on software usability

 The ease with which an application can handle the adaptation

correctly

Keyboard Access
Providing an efficient keyboard user interface is crucial to accessible

design.

 Provide keyboard access to all features. (Logo

Requirement)

 Fully document the keyboard UI. (Logo Requirement)

Comment [GCL58]: Page: 47

 12/29/98: I think these are revised elsewhere.

Comment [MJH59]: 6/9/99 Unclear what other

system standards we are referring to.

Comment [GCL60]: Page: 47

 12/30/98: Consider dividing these into subheadings

for Required and Optional.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 49

 Do not trigger unexpected side effects when the keyboard focus is

moved.

 Provide compatibility with the keyboard UI of analogous controls.

 Provide underlined access keys for all menu items and controls.

 Use logical keyboard navigation order.

 Display normally hidden keyboard UI elements when Keyboard

Preference flag is set.

 Allow users to select and copy text with the keyboard everywhere it

can be selected with a mouse.

 Allow the user to select and copy text with the keyboard everywhere

text is displayed.

 Avoid using the GetAsynchKeyState function.

 Where possible, provide customizable keyboard shortcuts.

 Trigger standard error sound event whenever keyboard input is

invalid or fails.

Keyboard Focus Location
Many accessibility aids need to be able to determine where the user is

working.

 Expose the keyboard focus area within a window, either by moving

the system caret or by using Active Accessibility. (Logo

Requirement)

 Provide visual indication of the keyboard focus location.

 Ensure onscreen indication of focus location is easy to see.

 Ensure visual indication of the focus location is compatible with

corresponding controls.

Exposing Screen Elements
Many accessibility aids need to identify and manipulate objects on the

screen.

 Use standard window classes and controls where possible because

they automatically support Microsoft Active Accessibility.

Implement Active Accessibility for custom UI elements.

 Ensure all objects, windows, and graphics are properly named, define

correct text labels for all controls, and give all windows a user-

friendly caption, even if the text is not visible on the screen.

 Expose names of owner-drawn menu items using Active

Accessibility, or provide an alternative to any owner-drawn menus.

 Expose names or descriptions for all images and bitmapped text.

 Ensure dialog boxes define the correct tab order.

 Assign unique identities to every type of window.

Comment [GCL61]: Page: 48

 12/29/98: Might be able to drop this one, GeorgA

checking with the ISVs.

Comment [GCL62]: Page: 48

 12/29/98: Sort sub bullets by priority.

The Microsoft Windows Guidelines for Accessible Software Design 50

 Provide hints for screen elements not exposed using Active

Accessibility.

 If screen contents are not exposed in other ways, support standard

drawing techniques that can be monitored and recorded. Provide

alternatives to operations that manipulate bitmaps or screen pixels

directly.

 Display text using appropriate read-write edit, read-only edit, rich

edit, status, static, or HTML controls.

 Assign objects unique labels within their context that are

unambiguous when taken out of context.

 Provide access to screen elements using an application-specific

object model when it provides more functionality than available

through Active Accessibility.

 If not using Active Accessibility, support the WM_GETDLGCODE

message in all custom controls that have a window to identify the

control type and keyboard interface.

Color
Color should be used to enhance, emphasize, or reiterate information.

 The application must conform when the High Contrast option is True.

 (Logo Requirement)

 Menus and dialog boxes must be displayed using the current

user-chosen Control Panel color scheme. This also applies to all

UI elements required to adjust colors in the application’s UI.

 Users must be able to adjust the application’s window display

colors.

 This option must override the application or document color

display without altering document content or affecting other

users.

 The preferred method is to use the currently chosen Control

Panel color scheme, but the application may also provide

secondary display options.

 When using Control Panel chosen colors or secondary display

options, always draw foreground objects in foreground colors

and fill backgrounds with the corresponding background color.

 Provide all visual information by means other than, or in

addition to, color.

 Omit any images or patterns drawn behind text. All important

information in such backgrounds must be available by another

means.

 Always use colors in proper foreground/background combinations.

 Avoid conveying important information by color alone, or make it

optional.

 Draw graphic objects to contrast with the current background color.

 Provide an option to omit complex or shaded backgrounds drawn behind

text.

Comment [MJH63]: 6/11/99 Added Rich Edit.

Comment [GCL64]: Page: 49

 12/29/98: Be sure that MSAA 2.0 handles this case

better than 1.x.

Comment [GCL65]: Page: 49

 12/29/98: Exceptions for small or temporary.

Comment [MJH66]: 6/9/99 Small or temporary

colors?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 51

 Where possible, allow users to customize all colors through Control Panel

or application UI without setting the system-wide High Contrast option.

 Where possible, draw monochrome images or textual equivalents that

contrast with the background color.

 When screen elements correspond with standard elements, use

appropriate system colors chosen in Control Panel.

Sound
 Do not convey important information by sound exclusively, provide a

visual presentation option.

 Display important information visually when the ShowSounds option is

True.

 Provide closed captions for all audio content exceeding three seconds.

 Trigger standard sound events when performing equivalent actions.

 Play audio as a user-customizable event through the Control Panel’s

Sounds section.

 Define many custom sound events, even if silent in the default sound

scheme.

 If the application generates sounds, provide a way to turn them off.

Timings
 Allow users to customize all UI timings.

(a) Provide an option for preventing message time outs.

(b) Provide an option for slowing or disabling any rapid screen updates or

flashing images.

Size
The size of text and graphics affects usability as well as accessibility.

 Applications must be compatible with system settings for sizes and fonts.

 (Logo Requirement)

 Avoid hard coding font sizes smaller than 10 points.

 Allow users to select font sizes for displayed information.

 Ensure the application is compatible with changes to the system font size

and number of pixels per logical inch.

 If drawing lines, determine the appropriate width rather than using a fixed

value.

 Allow users to adjust the size of non-document elements such as toolbars.

 Where possible, provide draft mode, zoom, and wrap to window features.

 Stretch, shrink, pad or crop images when space availability changes.

Comment [GCL67]: Page: 50

 12/29/98: Clarify that several of these are only

applicable when the High Contrast option is off.

Comment [MJH68]: 6/9/99 I will need to have

ore info on which and how.

Comment [GCL69]: Page: 50

 12/29/98: Is there a global mute system setting?

Comment [GCL70]: Page: 50

 12/29/98: Move that to the separate Fonts section.

Comment [GCL71]: Page: 50

 12/29/98: Note that this is very important for fixed-

pixel flat-panel displays.

Comment [GCL72]: Page: 50

 12/29/98: Need a new system metric for this.

The Microsoft Windows Guidelines for Accessible Software Design 52

Mouse Input
 Mouse movement should not trigger unexpected side effects.

 Applications must be compatible with specified system settings for mouse

input. (Logo Requirement)

 Provide mouse shortcuts for commonly used features.

 Provide for customizable toolbars.

 Emphasize simple, single click mouse operations.

Customizable User Interface
 Where possible, allow users or administrators to customize the

application to meet specific needs.

 Provide a method for users to automate tasks and assign them to simple

inputs.

Fonts
 Support user-selected font settings through the Control Panel.

 Allow user-adjusted font face and style display without affecting shared

documents or other user preferences.

Layout
Efficient visual design and layout makes an application more usable and

accessible for people with cognitive or visual impairments:

 Position the label so that it immediately precedes the control it labels in

Tab order.

 Provide easily recognizable labels for each control or object.

(a) Place the text label above or immediately to the left of the control.

(b) Keep the control and its label close together.

(c) Do not place unlabeled controls beneath or to the left of a label.

(d) Do not place a text label above one control and to the left of another.

(e) All text labels should end with colons.

(f) Static text controls that do not label other controls should not end in

colons.

(g) Follow conventions for positioning labels of icons and controls.

 Position related objects close to each other.

 Position objects on the screen or within a window according to Windows

UI design conventions.

 Do not use punctuation to create lines, boxes, decorative embellishments,

ASCII ―art‖ or emoticons.

 Do not include non-functional (decorative) buttons or unlabeled hotspots.

Documentation
 All application generated reports must be available in text file formts.

Comment [GCL73]: Page: 51

 12/29/98: Moved here from older Unexpected Side

Effects section.

Comment [GCL74]: Page: 51

 12/29/98: DickB owns updating this section.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 53

 Provide documentation in an accessible format, such as ASCII text or

HTML.

 Include descriptions of illustrations and tables in all accessible

documentation.

 Use color and graphics redundantly with text. Do not convey important

information by either color or graphics alone.

 Maintain high contrast between text and background.

 Do not use text smaller than 10 points.

 Where possible, bind printed documentation to lie flat.

Verifying Accessibility
Test the application against this checklist:

 Test with the High Contrast option and High Contrast appearance

schemes.

 Test compatibility with extra-large appearance schemes.

 Ensure all features can be used without a mouse through documented

methods.

 Test with the Inspect Objects tool and Windows Narrator accessory to

verify that all screen elements are exposed and properly labeled.

 Test with the Microsoft Magnifier to verify that the keyboard focus

location is properly exposed during navigation and editing. This

accessory is included with Windows 98 and Windows 2000 operating

systems and in the Active Accessibility Software Development kit..

 Test with commercial accessibility aids. See http://microsoft.com/enable/

for a list of these aids.

 Test with changes to the system font size and number of pixels per logical

inch using the Control Panel’s Display Settings option.

 Include people with disabilities and accessibility software vendors in beta

tests.

 Include people with disabilities in application usability tests.

 Conduct surveys of application users who have disabilities.

 Distribute free evaluation copies of the application to individuals with

disabilities, disability organizations, and accessibility software vendors.

http://microsoft.com/enable/

The Microsoft Windows Guidelines for Accessible Software Design 54

Section 5 Testing Techniques
Prior planning alone will not assure an application is as accessible as it could

be. Several techniques can determine an application's accessibility:

 Testing techniques

 Prioritizing testing tasks

 Getting feedback from customers

Testing Techniques
Test an application's accessibility by following these suggestions:

 Use the recommendation list - Have several disparate user/testers

compare the application to this document's list of recommendations. All

major features should be tested systematically, but informal testing can

also detect many of the most obvious problems.

 Large, high-contrast appearance schemes - Choose the Accessibility

Options section of Control Panel, choose the Display page, select the

High Contrast option and choose the Settings dialog box ―White on

Black‖ scheme.

 Do any parts of the application become invisible, hard to

recognize, or difficult to use?

 Do any areas continue to appear black on a white background?

 Are any elements improperly sized or truncated?

 Keyboard. Disconnect the mouse and use keyboard input exclusively to

operate all application features for a minimum of five workday-long

sessions.

 Are there operations that cannot be performed?

 Are any operations awkward or difficult to perform?

 Are keyboard mechanisms documented adequately?

 Do all controls and menu items have underlined access keys?

 Exposing screen elements - Use the Active Accessibility SDK's Inspect

Objects tool while hovering the mouse pointer over various application

objects. Make sure the tool displays a proper description that matches

standard windows and controls.

 Exposing the keyboard focus location - Use the Active Accessibility

SDK's Magnifier accessory while working with the keyboard exclusively

to make certain the work area appears magnified, in the Magnifier

window. This aid will be a standard accessory with future versions of

Windows and Windows NT.

 Compatibility with accessibility aids - Operate the application

configured with available accessibility aids to determine if they work

properly with the application. Many utilities are available at no charge or

in trial versions. See http://microsoft.com/enable/. for a catalog of these

tools.

 Larger system font - Increase the size of the system font using the

Display section of Control Panel.

 Does the application display correctly despite the changes?

 Can all application fonts be adjusted to be at least as large as the

system font?

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 55

 Custom font sizes - Change the display scaling ratio using the Custom

Font Size feature in the Display section of Control Panel.

 Does the application appearance remain consistent?

 Do various elements of the UI appear disproportionately large or

small?

Prioritizing Features
If you prioritize features to be tested, consider the following evaluation

factors:

 Number of users - Assign higher priority to features that affect the

largest number of users. Generally, document viewing features affect

more people than document authoring features.

 Frequency of use - Assign higher priority to features chosen frequently

by users who need them.

 Urgency of use – Assign higher priority to features that are integral,

necessary parts of the product, rather than optional or "ease-of-use"

features.

Getting Feedback from Customers
 To best determine if a product is truly usable by people with disabilities,

actively solicit feedback, suggestions and complaints from users with

disabilities.

 Beta tests – Include people with disabilities and accessibility aid

developers in all field or beta product tests.

 Usability tests – When performing usability tests, include subjects who

have disabilities. It is unnecessary to design special tests for these

subjects. This unmodified test platform can provide valuable insight into

the way they perform routine tasks - a very informative process -

revealing the different ways people approach a task.

 Surveys – Request design input from users who have disabilities. This

information may currently be available to application builders, but is

"filtered" before reaching the development team. The Internet is a

powerful resource for finding and consulting computer users with specific

disabilities.

 Evaluation programs – Distribute free evaluation copies of the

application to organizations that represent, work with or develop

accessibility aids for people with disabilities and request feedback.

Include accessibility aid manufacturers in all the above processes to

determine if their product is compatible with the application or in need of

configuration files or other modifications. Industry affiliations also provide

valuable technical suggestions for improving the application’s accessibility.

See http://microsoft.com/enable/ for a list of accessibility aid manufacturers.

The Microsoft Windows Guidelines for Accessible Software Design 56

Appendix A - Additional Resources
For additional information about accessibility, a catalog of accessibility aids,

and resources for people with disabilities, see Microsoft’s Accessibility site

on the World Wide Web: http://microsoft.com/enable/

Or contact:

Microsoft Sales Information Center

One Microsoft Way, Redmond, WA 98052-6393

World Wide Web: http://microsoft.com

Voice telephone: (800) 426-9400

Text telephone: (800) 892-5234

Additional Accessibility Guidelines
This document is based on general guidelines first proposed in the white

paper ―Making Software More Accessible for People with Disabilities.‖

prepared by Gregg Vanderheiden of the Trace R&D Center of the University

of Wisconsin. Research funding was provided by the Information

Technology Foundation (formerly ADAPSO Foundation) and the National

Institute for Disability and Rehabilitation Research (NIDRR) of the U.S.

Department of Education. That paper and similar guidelines for other types

of products are available on the CO-NET CD or in print from:

Trace R&D Center - University of Wisconsin-Madison

5901 Research Park Boulevard, Madison, WI 53719-1252

World Wide Web: http://trace.wisc.edu/

Fax: (608) 262-8848

The Windows Interface Guidelines for Software Design contains a section on

accessible software design. It is available online at http://msdn.microsoft.com

and in book form through Microsoft Press.

http://microsoft.com/
http://trace.wisc.edu/
http://msdn.microsoft.com/

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 57

Appendix B - Accessible Documentation
Applications are not considered accessible if a user cannot learn to use it.

Documentation in Accessible Formats
Some users have difficulty reading or holding conventionally printed

documentation, so documentation should also be provided in more accessible

formats: online, multimedia, or CD-ROM tutorials.

Inform the user if online documentation is available that covers the same

information as the print version. Users should be able to determine easily if

online documentation is available, how complete it is, and how to obtain it.

Of course, the application presenting the documentation itself must be

accessible.

The following formats are acceptable for accessible documentation:

 HTML Help. Microsoft is currently developing HTML Help, the next-

generation of help systems for the Windows operating systems. The

HTML Help system will be completely compatible with accessibility aids

and take advantage of accessibility features in Microsoft Internet

Explorer. Documentation developed for this system is accessible to users

with disabilities through WinHelp.

 Text formats. Vendors should offer customers documentation in

electronic form, usually provided as formatted ASCII text files, or as

HTML files designed for the World Wide Web.

These formats address a wide variety of needs.

Example: Customers who are blind or have low vision can read the files

in their own word processor using screen review or screen enlarger

utilities. Customers with mobility impairments can read them online

without holding or turning the pages of a physical book. HTML files

normally include special tags that identify the structure of the document

(that is, tags for headings, footnotes, and so on) and are routinely included

as part of all HTML files.

 Specialized formats. Documentation can also be provided in large print,

Braille, or audiotapes. These options are not usually provided directly by

the software company, but licensed as source files to users or

organizations that create accessible versions in those formats.

 All of the above formats should provide illustration descriptions. All

formats other than HTML or HTML Help should also provide

descriptions of table structures.

The Microsoft Windows Guidelines for Accessible Software Design 58

 Designing Accessible Documentation
Accessible documentation design follows the same rules as accessible

software visual design:

 Do not convey information by color or graphics exclusively. If

printed documentation relies on color or graphics to convey important

information, that information will be available to a limited number of

users. Some users may rely on a variety of devices to enlarge a

document or translate it into ASCII text, speech, or Braille and these

devices are often unable to interpret and convey graphic or color-

coded information.

 Color and graphics should be added redundantly to the text to

improve documents.

Example: If a reference work contains a function call list and details

important information about each one, some entries can be printed as

blue, rather than black text, denoting instantly that they are not

supported on all systems. In this case, all the entries that are shown in

blue should also include a phrase, such as ―platform specific‖ in their

description. If space is limited, each can simply be marked with an

asterisk and footnoted.

 Redundant information display often makes documentation easier

for everyone to use. A phrase or asterisk can also be used to call out

certain paragraphs with a graphic in the margin. This modified text

makes it easier to translate your documentation into alternative

formats, such as Braille or an online document.

 Maintain high contrast between text and its background and

avoid screened art behind text.

 Do not use text smaller than 10 points in size.

 Bind printed documents to lie flat. Comb and spiral bindings are

considered most accessible because they allow a document to lie flat.

These bindings are useful for people with motion or visual

impairments.

Example: A person who is quadriplegic may open the book flat and

turn the pages with a pencil. A person who is blind may run it through

a flatbed scanner to use optical-character recognition for conversion to

an online format. A person with low vision might use a closed-caption

television system to enlarge the pages. People who want to type while

reading also prefer flat bindings.

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 59

Appendix C - Accessible Packaging
This appendix describes accessible packaging for software:

 Provide easy-to-identify diskettes. All diskettes and CD-ROM disks should

be given a unique volume label that easily identifies the specific product and

disk number. People who are blind may not be able to read the printed disk

label, but providing an appropriate volume label allows them to identify the

diskette using the dir command at the command prompt.

 Provide easy-to-open packaging. Users with mobility impairments may

have trouble opening some packaging. Evaluate existing packaging to

determine if it could be made easier to use. Example: Shrink-wrapped

packages can be easy to open if they are left unsealed along a seam where

two layers overlap.

 Don’t require users to read the packaging. If your setup procedure

requires the user to read installation instructions, or a product identification

code that is only available in print, it can be impossible for users with visual

impairments to install the software without assistance.

The Microsoft Windows Guidelines for Accessible Software Design 60

Appendix D - Product Support and Customer Service
The following guidelines can help when providing effective technical support and

product service for customers with disabilities.

 Provide customer support through text telephone and modem. Customers

who are deaf or hard-of-hearing or who have speech impairments may not be

able to use standard voice telephones to access customer information and

support services. These services should, therefore, be made available through a

text telephone (also known as TTY or TDD) and standard ASCII modems.

Stand-alone text telephones are available with a wide range of features, and

combination TTY/ASCII modems can also be attached to standard computers,

although specialized software is normally used to get full answering-machine

functionality.

 Train your service representatives. You should provide your customer service

and technical support representatives with guidelines for interacting with people

with disabilities. Having a basic familiarity with types of disabilities, the way in

which people with disabilities use computers, and the very fact that they do use

computers, can go a long way towards making customer interactions successful

and positive.

 Address customers with disabilities. Some companies, including Microsoft,

incorporate information about accessibility into every product, and into their

sites on the World Wide Web. This can help establish a positive relationship

with the disability community and make customers with disabilities feel more

comfortable in dealing with your organization.

Appendix E – Benefits of Accessible Software

7/5/16 The Microsoft Windows Guidelines for Accessible Software Design 61

Appendix F - Exercises

The Microsoft Windows Guidelines for Accessible Software Design 62

Appendix G - Windows Version 3.x

Guidelines
The following guidelines do not affect Win32® - based applications designed for

Windows 95, Windows 98, Windows 2000 or Windows NT, but should be followed

when developing 16-bit applications (also called Win16 applications) for Windows

version 3. x.

Yielding Control to Background Applications
Windows-based 16-bit applications should yield control at all times so other

programs, such as accessibility aids, can run in the background. If a program refuses

to yield control, the user is unable to access the machine. You can avoid access

problems by following these techniques:

 Avoid using system modal dialog boxes or windows. When a system-modal

window is active, no background tasks are allowed to run. (This is true to a

lesser extent for 16-bit applications running under Windows 95, although it is

not a problem for those running under Windows NT.)

 Avoid using the PeekMessage function in tight loops without yielding.

Colors in Online Help
An author designing online help topics can specify foreground and background

colors, or use the color scheme selected by the user in Control Panel. If the author

specifies his or her own color scheme, the user running Windows version 3. x or

Windows NT version 3. x has no way to override the scheme and use a different set

of colors. As a consequence, some users who require high-contrast color schemes

will not be able to make use of the help topic. (In Windows 95, the help system

provides the user with the option to use only Control Panel colors. However, this

option leads to having the topic appear different from the help author’s preference.)

If you want your online help to be usable by as many customers as possible, you

should generally allow the user to choose their own color scheme rather than

specifying one of your own choosing.

Testing Accessibility Flags
Windows 95 introduced four new flags that notify applications when to adjust to

accommodate users with disabilities. Although each can be tested using the

SystemParametersInfo function, this capability is not supported in earlier versions

of Windows or Windows NT. To make this behavior available in earlier operating

systems, you can test for the flags as WIN.INI settings. Windows does not use these

settings, but users who want specified disability options can set them manually. The

following WIN.INI settings are recommended.

SystemParametersInfo WIN.INI setting in earlier operating systems

SPI_SHOWSOUNDS [Windows] ShowSounds=TRUE

SPI_KEYBOARDPREF [Windows] KeyboardPref=TRUE

SPI_SCREENREADER [Windows] ScreenReader=TRUE

SPI_HIGHCONTRAST [Windows] HighContrast=TRUE

